vit-base-kidney-stone-Michel_Daudon_-w256_1k_v1-_SUR
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.8337
- Accuracy: 0.7580
- Precision: 0.7873
- Recall: 0.7580
- F1: 0.7485
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.1701 | 0.6667 | 100 | 0.8337 | 0.7580 | 0.7873 | 0.7580 | 0.7485 |
0.1078 | 1.3333 | 200 | 0.9744 | 0.7392 | 0.7683 | 0.7392 | 0.7328 |
0.0149 | 2.0 | 300 | 1.1815 | 0.7490 | 0.8429 | 0.7490 | 0.7488 |
0.0518 | 2.6667 | 400 | 1.3244 | 0.7522 | 0.8024 | 0.7522 | 0.7474 |
0.008 | 3.3333 | 500 | 1.0330 | 0.7727 | 0.8049 | 0.7727 | 0.7753 |
0.0058 | 4.0 | 600 | 1.2145 | 0.7490 | 0.7861 | 0.7490 | 0.7510 |
0.0031 | 4.6667 | 700 | 0.9566 | 0.8013 | 0.7999 | 0.8013 | 0.7994 |
0.0026 | 5.3333 | 800 | 1.3827 | 0.7678 | 0.8112 | 0.7678 | 0.7710 |
0.0141 | 6.0 | 900 | 1.0396 | 0.8078 | 0.8238 | 0.8078 | 0.8029 |
0.0194 | 6.6667 | 1000 | 1.3622 | 0.7514 | 0.7612 | 0.7514 | 0.7525 |
0.0015 | 7.3333 | 1100 | 1.1867 | 0.7784 | 0.8293 | 0.7784 | 0.7784 |
0.0012 | 8.0 | 1200 | 1.5671 | 0.7269 | 0.7813 | 0.7269 | 0.7367 |
0.0011 | 8.6667 | 1300 | 1.2410 | 0.7629 | 0.7779 | 0.7629 | 0.7682 |
0.001 | 9.3333 | 1400 | 1.2369 | 0.7899 | 0.8155 | 0.7899 | 0.7849 |
0.0009 | 10.0 | 1500 | 1.2282 | 0.7915 | 0.8187 | 0.7915 | 0.7878 |
0.0008 | 10.6667 | 1600 | 1.2243 | 0.7948 | 0.8223 | 0.7948 | 0.7917 |
0.0008 | 11.3333 | 1700 | 1.2258 | 0.7989 | 0.8256 | 0.7989 | 0.7957 |
0.0007 | 12.0 | 1800 | 1.2286 | 0.7997 | 0.8262 | 0.7997 | 0.7965 |
0.0007 | 12.6667 | 1900 | 1.2296 | 0.7989 | 0.8245 | 0.7989 | 0.7957 |
0.0007 | 13.3333 | 2000 | 1.2314 | 0.7989 | 0.8245 | 0.7989 | 0.7957 |
0.0006 | 14.0 | 2100 | 1.2325 | 0.7997 | 0.8252 | 0.7997 | 0.7967 |
0.0006 | 14.6667 | 2200 | 1.2330 | 0.8005 | 0.8258 | 0.8005 | 0.7978 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Ivanrs/vit-base-kidney-stone-Michel_Daudon_-w256_1k_v1-_SUR
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldertest set self-reported0.758
- Precision on imagefoldertest set self-reported0.787
- Recall on imagefoldertest set self-reported0.758
- F1 on imagefoldertest set self-reported0.748