vit-base-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_MIX
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4058
- Accuracy: 0.8942
- Precision: 0.9042
- Recall: 0.8942
- F1: 0.8940
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.2458 | 0.3333 | 100 | 0.6117 | 0.8183 | 0.8403 | 0.8183 | 0.8152 |
0.1311 | 0.6667 | 200 | 0.4116 | 0.8696 | 0.8705 | 0.8696 | 0.8694 |
0.037 | 1.0 | 300 | 0.4058 | 0.8942 | 0.9042 | 0.8942 | 0.8940 |
0.149 | 1.3333 | 400 | 0.4525 | 0.8846 | 0.8926 | 0.8846 | 0.8818 |
0.1007 | 1.6667 | 500 | 0.8220 | 0.7908 | 0.8404 | 0.7908 | 0.7917 |
0.0189 | 2.0 | 600 | 0.5199 | 0.8762 | 0.8808 | 0.8762 | 0.8756 |
0.0531 | 2.3333 | 700 | 0.5875 | 0.8804 | 0.8944 | 0.8804 | 0.8784 |
0.0169 | 2.6667 | 800 | 0.7323 | 0.8488 | 0.8554 | 0.8488 | 0.8479 |
0.0076 | 3.0 | 900 | 0.4755 | 0.8954 | 0.9015 | 0.8954 | 0.8931 |
0.0015 | 3.3333 | 1000 | 0.4957 | 0.9025 | 0.9070 | 0.9025 | 0.9006 |
0.012 | 3.6667 | 1100 | 0.8585 | 0.8367 | 0.8589 | 0.8367 | 0.8292 |
0.1429 | 4.0 | 1200 | 0.5490 | 0.8804 | 0.8904 | 0.8804 | 0.8785 |
0.0242 | 4.3333 | 1300 | 0.4934 | 0.9021 | 0.9144 | 0.9021 | 0.8970 |
0.001 | 4.6667 | 1400 | 0.5054 | 0.9062 | 0.9195 | 0.9062 | 0.9039 |
0.0012 | 5.0 | 1500 | 0.7132 | 0.8675 | 0.8886 | 0.8675 | 0.8680 |
0.0043 | 5.3333 | 1600 | 0.7203 | 0.8871 | 0.9069 | 0.8871 | 0.8844 |
0.0007 | 5.6667 | 1700 | 0.5250 | 0.9079 | 0.9097 | 0.9079 | 0.9072 |
0.043 | 6.0 | 1800 | 0.6485 | 0.8788 | 0.8943 | 0.8788 | 0.8740 |
0.0006 | 6.3333 | 1900 | 0.5322 | 0.8996 | 0.9015 | 0.8996 | 0.8996 |
0.0005 | 6.6667 | 2000 | 0.6328 | 0.8904 | 0.9044 | 0.8904 | 0.8872 |
0.0004 | 7.0 | 2100 | 0.6130 | 0.8942 | 0.9061 | 0.8942 | 0.8916 |
0.0004 | 7.3333 | 2200 | 0.6070 | 0.8967 | 0.9076 | 0.8967 | 0.8942 |
0.0003 | 7.6667 | 2300 | 0.6067 | 0.8983 | 0.9095 | 0.8983 | 0.8960 |
0.0003 | 8.0 | 2400 | 0.6028 | 0.9004 | 0.9107 | 0.9004 | 0.8981 |
0.0003 | 8.3333 | 2500 | 0.6009 | 0.9021 | 0.9118 | 0.9021 | 0.8999 |
0.0003 | 8.6667 | 2600 | 0.6020 | 0.9042 | 0.9132 | 0.9042 | 0.9021 |
0.0003 | 9.0 | 2700 | 0.6018 | 0.9042 | 0.9130 | 0.9042 | 0.9022 |
0.0002 | 9.3333 | 2800 | 0.6026 | 0.9042 | 0.9125 | 0.9042 | 0.9022 |
0.0002 | 9.6667 | 2900 | 0.6037 | 0.9042 | 0.9125 | 0.9042 | 0.9022 |
0.0002 | 10.0 | 3000 | 0.6053 | 0.905 | 0.9128 | 0.905 | 0.9031 |
0.0002 | 10.3333 | 3100 | 0.6060 | 0.9058 | 0.9133 | 0.9058 | 0.9040 |
0.0002 | 10.6667 | 3200 | 0.6082 | 0.9058 | 0.9133 | 0.9058 | 0.9040 |
0.0002 | 11.0 | 3300 | 0.6095 | 0.9058 | 0.9133 | 0.9058 | 0.9040 |
0.0002 | 11.3333 | 3400 | 0.6109 | 0.9062 | 0.9136 | 0.9062 | 0.9045 |
0.0002 | 11.6667 | 3500 | 0.6122 | 0.9062 | 0.9136 | 0.9062 | 0.9045 |
0.0002 | 12.0 | 3600 | 0.6135 | 0.9062 | 0.9136 | 0.9062 | 0.9045 |
0.0002 | 12.3333 | 3700 | 0.6150 | 0.9067 | 0.9139 | 0.9067 | 0.9050 |
0.0002 | 12.6667 | 3800 | 0.6159 | 0.9067 | 0.9139 | 0.9067 | 0.9050 |
0.0002 | 13.0 | 3900 | 0.6169 | 0.9067 | 0.9139 | 0.9067 | 0.9050 |
0.0002 | 13.3333 | 4000 | 0.6179 | 0.9067 | 0.9139 | 0.9067 | 0.9050 |
0.0001 | 13.6667 | 4100 | 0.6187 | 0.9067 | 0.9139 | 0.9067 | 0.9050 |
0.0001 | 14.0 | 4200 | 0.6193 | 0.9067 | 0.9139 | 0.9067 | 0.9050 |
0.0001 | 14.3333 | 4300 | 0.6198 | 0.9067 | 0.9139 | 0.9067 | 0.9050 |
0.0001 | 14.6667 | 4400 | 0.6201 | 0.9067 | 0.9139 | 0.9067 | 0.9050 |
0.0001 | 15.0 | 4500 | 0.6202 | 0.9067 | 0.9139 | 0.9067 | 0.9050 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Ivanrs/vit-base-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_MIX
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldertest set self-reported0.894
- Precision on imagefoldertest set self-reported0.904
- Recall on imagefoldertest set self-reported0.894
- F1 on imagefoldertest set self-reported0.894