Edit model card
YAML Metadata Warning: The pipeline tag "conversational" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, text2text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, any-to-any, other

Saiga2 7B, Russian LLaMA2-based chatbot

Based on LLaMA-2 13B HF.

This is an adapter-only version.

Colab: link

Llama.cpp version: link

Training code: link

WARNING 1: Run with the development version of transformers and peft!

WARNING 2: Avoid using V100 (in Colab, for example). Outputs are much worse in this case.

WARNING 3: You can use the Llama-2-13B-fp16 base model instead.

from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig

MODEL_NAME = "IlyaGusev/saiga2_13b_lora"
DEFAULT_MESSAGE_TEMPLATE = "<s>{role}\n{content}</s>\n"
DEFAULT_SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."

class Conversation:
    def __init__(
        self,
        message_template=DEFAULT_MESSAGE_TEMPLATE,
        system_prompt=DEFAULT_SYSTEM_PROMPT,
        start_token_id=1,
        bot_token_id=9225
    ):
        self.message_template = message_template
        self.start_token_id = start_token_id
        self.bot_token_id = bot_token_id
        self.messages = [{
            "role": "system",
            "content": system_prompt
        }]

    def get_start_token_id(self):
        return self.start_token_id

    def get_bot_token_id(self):
        return self.bot_token_id

    def add_user_message(self, message):
        self.messages.append({
            "role": "user",
            "content": message
        })

    def add_bot_message(self, message):
        self.messages.append({
            "role": "bot",
            "content": message
        })

    def get_prompt(self, tokenizer):
        final_text = ""
        for message in self.messages:
            message_text = self.message_template.format(**message)
            final_text += message_text
        final_text += tokenizer.decode([self.start_token_id, self.bot_token_id])
        return final_text.strip()


def generate(model, tokenizer, prompt, generation_config):
    data = tokenizer(prompt, return_tensors="pt")
    data = {k: v.to(model.device) for k, v in data.items()}
    output_ids = model.generate(
        **data,
        generation_config=generation_config
    )[0]
    output_ids = output_ids[len(data["input_ids"][0]):]
    output = tokenizer.decode(output_ids, skip_special_tokens=True)
    return output.strip()

config = PeftConfig.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path,
    load_in_8bit=True,
    torch_dtype=torch.float16,
    device_map="auto"
)
model = PeftModel.from_pretrained(
    model,
    MODEL_NAME,
    torch_dtype=torch.float16
)
model.eval()

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False)
generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
print(generation_config)

inputs = ["Почему трава зеленая?", "Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч"]
for inp in inputs:
    conversation = Conversation()
    conversation.add_user_message(inp)
    prompt = conversation.get_prompt(tokenizer)

    output = generate(model, tokenizer, prompt, generation_config)
    print(inp)
    print(output)
    print()
    print("==============================")
    print()

Examples:

User: Почему трава зеленая? 
Saiga: Зеленый цвет растений обусловлен наличием пигмента хлорофилла в их листьях. Хлорофилл содержит железо, которое способно поглощать световой волны красного, оранжевого и желтого цвета, а отражает световые волны зеленого цвета. Таким образом, зеленый цвет является результатом процесса фотосинтеза, который происходит в листьях растений.
User: Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч
Saiga: Однажды в парке на улице Ленина произошло невероятное событие. В тот день, когда все жители города были заняты своими делами, Таня решила отправиться на прогулку. Она была очень веселой и радостной, потому что еще накануне она получила отличные оценки за успешную защиту курсовой работы.
Перед тем как выйти из дома, Тане пришла идея взять с собой мяч для игры в футбол. Она знала, что в парке есть хорошая площадка для этого вида спорта, поэтому решила воспользоваться этим прекрасным временем.
Когда Таня подошла к парку, она заметила множество людей, которые играли в различные виды спорта. Некоторые стояли у столов для настольного тенниса, другие – на кортах для баскетбола или волейбола. Но ни один из них не был занят футболом.
Так как Тане было очень хотелось сыграть в футбол, она решила начать самостоятельную игру. Она бросила мяч в воздух и стала бегать за ним, пытаясь его достать. Однако, каждый раз, когда она подбиралась к мячу, он быстро летел далеко от нее.
Вскоре к Тане подошел молодой парень, который также играл в футбол. Он предложил ей стать её партнером и помочь ей в игре. Тане была рада этому предложению, так как она не могла играть одна.
Игра продолжалась уже несколько часов. Молодой парень и Таня перемещались по всей площадке, стараясь забить голы друг другу. Их команды менялись каждый раз, когда они забивали мяч в противоположные ворота.
Но внезапно, когда Тане думала, что игра уже закончена, она заметила, что мяч исчез. Она и ее партнер начали искать его по всей площадке, но никаких следов не находили.
Наконец, после долгого поисков, Тане заметила, что мяч находится в глубине кустов. Она и ее партнер решили проникнуть внутрь, чтобы найти его.
Через некоторое время они нашли мяч, который был спрятан в густом кусте. Когда они выбрались из него, они обнаружили, что их путь ведет к большому дереву.
Дерево было очень высоким и красивым, и Тане сразу же поняла, что это было место, где она должна остаться. Она решила, что будет здесь играть в футбол каждую субботу вместе со своим новым партнером.
Так произошло, что благодаря этой случайной встрече, Тане нашла своего нового друга и новое увлечение. С тех пор она проводила каждую субботу в этом парке, играя в футбол и наслаждаясь прекрасными видами.

v1:

  • dataset code revision 7712a061d993f61c49b1e2d992e893c48acb3a87
  • wandb link
  • 7 datasets: ru_turbo_alpaca, ru_turbo_saiga, ru_sharegpt_cleaned, oasst1_ru_main_branch, gpt_roleplay_realm, ru_turbo_alpaca_evol_instruct (iteration 1/2), ru_instruct_gpt4
  • Datasets merging script: create_chat_set.py
  • saiga2_13b vs saiga13b: 79-2-95
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Datasets used to train IlyaGusev/saiga2_13b_lora

Collection including IlyaGusev/saiga2_13b_lora