Edit model card

SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-mpnet-base-v2
  • Maximum Sequence Length: 384 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("IconicAI/all-mpnet-base-v2-anteater")
# Run inference
sentences = [
    'floating up',
    'i can see an interface',
    'All indicators are blue.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9002
cosine_accuracy_threshold 0.4495
cosine_f1 0.8908
cosine_f1_threshold 0.4158
cosine_precision 0.8739
cosine_recall 0.9085
cosine_ap 0.9618
dot_accuracy 0.9002
dot_accuracy_threshold 0.4495
dot_f1 0.8908
dot_f1_threshold 0.4158
dot_precision 0.8739
dot_recall 0.9085
dot_ap 0.9618
manhattan_accuracy 0.899
manhattan_accuracy_threshold 22.6441
manhattan_f1 0.8901
manhattan_f1_threshold 23.3306
manhattan_precision 0.8757
manhattan_recall 0.905
manhattan_ap 0.9615
euclidean_accuracy 0.9002
euclidean_accuracy_threshold 1.0493
euclidean_f1 0.8908
euclidean_f1_threshold 1.0809
euclidean_precision 0.8739
euclidean_recall 0.9085
euclidean_ap 0.9618
max_accuracy 0.9002
max_accuracy_threshold 22.6441
max_f1 0.8908
max_f1_threshold 23.3306
max_precision 0.8757
max_recall 0.9085
max_ap 0.9618

Training Details

Training Dataset

Unnamed Dataset

  • Size: 645,861 training samples
  • Columns: example1, example2, and label
  • Approximate statistics based on the first 1000 samples:
    example1 example2 label
    type string string int
    details
    • min: 3 tokens
    • mean: 9.02 tokens
    • max: 25 tokens
    • min: 3 tokens
    • mean: 9.19 tokens
    • max: 23 tokens
    • 1: 100.00%
  • Samples:
    example1 example2 label
    Drones are present all around here. What are those drones doing buzzing around here? 1
    am i the only one am i the only one alive on this ship 1
    I’m in a room with a door in front of me and a terminal on the wall mechanics room 1
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 1.0,
        "size_average": true
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 76,741 evaluation samples
  • Columns: example1, example2, and label
  • Approximate statistics based on the first 1000 samples:
    example1 example2 label
    type string string int
    details
    • min: 3 tokens
    • mean: 9.25 tokens
    • max: 21 tokens
    • min: 3 tokens
    • mean: 9.15 tokens
    • max: 19 tokens
    • 1: 100.00%
  • Samples:
    example1 example2 label
    Not much, how about you? Nothing, you? 1
    Rings stopped moving. I notice the rings are not spinning anymore. 1
    it's Laboratory Chemical Storage the switch is Laboratory Chemical Storage 1
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 1.0,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • learning_rate: 1e-07
  • weight_decay: 0.01
  • max_grad_norm: 0.02
  • num_train_epochs: 5
  • warmup_steps: 100
  • bf16: True
  • eval_on_start: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1e-07
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 0.02
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 100
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: True
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss loss sts-dev_max_ap
0 0 - 0.0764 0.9175
0.0040 10 0.0772 - -
0.0079 20 0.0783 - -
0.0119 30 0.0775 - -
0.0159 40 0.0756 - -
0.0198 50 0.075 - -
0.0238 60 0.0777 - -
0.0277 70 0.0784 - -
0.0317 80 0.0721 - -
0.0357 90 0.0755 - -
0.0396 100 0.0778 - -
0.0436 110 0.0735 - -
0.0476 120 0.0753 - -
0.0515 130 0.0741 - -
0.0555 140 0.0791 - -
0.0595 150 0.0753 - -
0.0634 160 0.0748 - -
0.0674 170 0.0709 - -
0.0713 180 0.0738 - -
0.0753 190 0.0759 - -
0.0793 200 0.0703 - -
0.0832 210 0.0724 - -
0.0872 220 0.0726 - -
0.0912 230 0.0734 - -
0.0951 240 0.0718 - -
0.0991 250 0.0776 - -
0.1031 260 0.0757 - -
0.1070 270 0.0722 - -
0.1110 280 0.0746 - -
0.1149 290 0.0718 - -
0.1189 300 0.0733 - -
0.1229 310 0.0725 - -
0.1268 320 0.0724 - -
0.1308 330 0.0681 - -
0.1348 340 0.0735 - -
0.1387 350 0.0716 - -
0.1427 360 0.0698 - -
0.1467 370 0.072 - -
0.1506 380 0.071 - -
0.1546 390 0.0713 - -
0.1585 400 0.073 - -
0.1625 410 0.077 - -
0.1665 420 0.072 - -
0.1704 430 0.0689 - -
0.1744 440 0.0708 - -
0.1784 450 0.0687 - -
0.1823 460 0.0692 - -
0.1863 470 0.0715 - -
0.1902 480 0.0707 - -
0.1942 490 0.0671 - -
0.1982 500 0.0741 0.0703 0.9245
0.2021 510 0.0681 - -
0.2061 520 0.0749 - -
0.2101 530 0.0718 - -
0.2140 540 0.0689 - -
0.2180 550 0.0733 - -
0.2220 560 0.067 - -
0.2259 570 0.0685 - -
0.2299 580 0.07 - -
0.2338 590 0.0683 - -
0.2378 600 0.0693 - -
0.2418 610 0.0705 - -
0.2457 620 0.0707 - -
0.2497 630 0.0703 - -
0.2537 640 0.068 - -
0.2576 650 0.0682 - -
0.2616 660 0.0654 - -
0.2656 670 0.0682 - -
0.2695 680 0.0698 - -
0.2735 690 0.0701 - -
0.2774 700 0.0674 - -
0.2814 710 0.0669 - -
0.2854 720 0.0677 - -
0.2893 730 0.0674 - -
0.2933 740 0.0682 - -
0.2973 750 0.0677 - -
0.3012 760 0.0661 - -
0.3052 770 0.0634 - -
0.3092 780 0.0658 - -
0.3131 790 0.0687 - -
0.3171 800 0.069 - -
0.3210 810 0.0665 - -
0.3250 820 0.0648 - -
0.3290 830 0.0656 - -
0.3329 840 0.0672 - -
0.3369 850 0.0663 - -
0.3409 860 0.0666 - -
0.3448 870 0.0644 - -
0.3488 880 0.065 - -
0.3528 890 0.0666 - -
0.3567 900 0.0657 - -
0.3607 910 0.0636 - -
0.3646 920 0.0681 - -
0.3686 930 0.0671 - -
0.3726 940 0.0653 - -
0.3765 950 0.0643 - -
0.3805 960 0.0637 - -
0.3845 970 0.066 - -
0.3884 980 0.0645 - -
0.3924 990 0.0628 - -
0.3964 1000 0.0627 0.0653 0.9325
0.4003 1010 0.0647 - -
0.4043 1020 0.0649 - -
0.4082 1030 0.0637 - -
0.4122 1040 0.0648 - -
0.4162 1050 0.0647 - -
0.4201 1060 0.0646 - -
0.4241 1070 0.0659 - -
0.4281 1080 0.0641 - -
0.4320 1090 0.0609 - -
0.4360 1100 0.0642 - -
0.4400 1110 0.0614 - -
0.4439 1120 0.0603 - -
0.4479 1130 0.0613 - -
0.4518 1140 0.0646 - -
0.4558 1150 0.0619 - -
0.4598 1160 0.0611 - -
0.4637 1170 0.0638 - -
0.4677 1180 0.0636 - -
0.4717 1190 0.0647 - -
0.4756 1200 0.0622 - -
0.4796 1210 0.0642 - -
0.4836 1220 0.0607 - -
0.4875 1230 0.0623 - -
0.4915 1240 0.0614 - -
0.4954 1250 0.0643 - -
0.4994 1260 0.0614 - -
0.5034 1270 0.0599 - -
0.5073 1280 0.0615 - -
0.5113 1290 0.0595 - -
0.5153 1300 0.061 - -
0.5192 1310 0.0623 - -
0.5232 1320 0.0646 - -
0.5272 1330 0.0621 - -
0.5311 1340 0.0606 - -
0.5351 1350 0.0597 - -
0.5390 1360 0.0621 - -
0.5430 1370 0.0586 - -
0.5470 1380 0.0618 - -
0.5509 1390 0.0601 - -
0.5549 1400 0.0578 - -
0.5589 1410 0.0628 - -
0.5628 1420 0.0595 - -
0.5668 1430 0.0576 - -
0.5707 1440 0.0606 - -
0.5747 1450 0.0618 - -
0.5787 1460 0.0591 - -
0.5826 1470 0.0598 - -
0.5866 1480 0.0611 - -
0.5906 1490 0.0594 - -
0.5945 1500 0.0616 0.0619 0.9393
0.5985 1510 0.0592 - -
0.6025 1520 0.0597 - -
0.6064 1530 0.0619 - -
0.6104 1540 0.0595 - -
0.6143 1550 0.0598 - -
0.6183 1560 0.0609 - -
0.6223 1570 0.059 - -
0.6262 1580 0.0601 - -
0.6302 1590 0.0595 - -
0.6342 1600 0.059 - -
0.6381 1610 0.0606 - -
0.6421 1620 0.0591 - -
0.6461 1630 0.0617 - -
0.6500 1640 0.0592 - -
0.6540 1650 0.0588 - -
0.6579 1660 0.0587 - -
0.6619 1670 0.0585 - -
0.6659 1680 0.0558 - -
0.6698 1690 0.057 - -
0.6738 1700 0.0598 - -
0.6778 1710 0.0567 - -
0.6817 1720 0.0555 - -
0.6857 1730 0.0604 - -
0.6897 1740 0.0558 - -
0.6936 1750 0.0572 - -
0.6976 1760 0.0577 - -
0.7015 1770 0.0587 - -
0.7055 1780 0.0589 - -
0.7095 1790 0.0598 - -
0.7134 1800 0.0583 - -
0.7174 1810 0.058 - -
0.7214 1820 0.0564 - -
0.7253 1830 0.0589 - -
0.7293 1840 0.0557 - -
0.7333 1850 0.0586 - -
0.7372 1860 0.0601 - -
0.7412 1870 0.0556 - -
0.7451 1880 0.0572 - -
0.7491 1890 0.0574 - -
0.7531 1900 0.0583 - -
0.7570 1910 0.0573 - -
0.7610 1920 0.0555 - -
0.7650 1930 0.0561 - -
0.7689 1940 0.0579 - -
0.7729 1950 0.0557 - -
0.7769 1960 0.0558 - -
0.7808 1970 0.0589 - -
0.7848 1980 0.0572 - -
0.7887 1990 0.0572 - -
0.7927 2000 0.0549 0.0592 0.9444
0.7967 2010 0.0548 - -
0.8006 2020 0.0569 - -
0.8046 2030 0.058 - -
0.8086 2040 0.0581 - -
0.8125 2050 0.0585 - -
0.8165 2060 0.0542 - -
0.8205 2070 0.0558 - -
0.8244 2080 0.0569 - -
0.8284 2090 0.0564 - -
0.8323 2100 0.0552 - -
0.8363 2110 0.0559 - -
0.8403 2120 0.0534 - -
0.8442 2130 0.0543 - -
0.8482 2140 0.0573 - -
0.8522 2150 0.0546 - -
0.8561 2160 0.0554 - -
0.8601 2170 0.0568 - -
0.8641 2180 0.0544 - -
0.8680 2190 0.0547 - -
0.8720 2200 0.0549 - -
0.8759 2210 0.0544 - -
0.8799 2220 0.058 - -
0.8839 2230 0.0557 - -
0.8878 2240 0.0551 - -
0.8918 2250 0.0558 - -
0.8958 2260 0.0554 - -
0.8997 2270 0.053 - -
0.9037 2280 0.0552 - -
0.9076 2290 0.0549 - -
0.9116 2300 0.0533 - -
0.9156 2310 0.0543 - -
0.9195 2320 0.0531 - -
0.9235 2330 0.0553 - -
0.9275 2340 0.0542 - -
0.9314 2350 0.0537 - -
0.9354 2360 0.0536 - -
0.9394 2370 0.055 - -
0.9433 2380 0.0551 - -
0.9473 2390 0.0532 - -
0.9512 2400 0.0556 - -
0.9552 2410 0.0548 - -
0.9592 2420 0.0533 - -
0.9631 2430 0.0536 - -
0.9671 2440 0.0549 - -
0.9711 2450 0.0548 - -
0.9750 2460 0.0557 - -
0.9790 2470 0.055 - -
0.9830 2480 0.0535 - -
0.9869 2490 0.0564 - -
0.9909 2500 0.0526 0.0572 0.9482
0.9948 2510 0.0547 - -
0.9988 2520 0.054 - -
1.0028 2530 0.0527 - -
1.0067 2540 0.0522 - -
1.0107 2550 0.0535 - -
1.0147 2560 0.0557 - -
1.0186 2570 0.052 - -
1.0226 2580 0.055 - -
1.0266 2590 0.0542 - -
1.0305 2600 0.0539 - -
1.0345 2610 0.0523 - -
1.0384 2620 0.0507 - -
1.0424 2630 0.0517 - -
1.0464 2640 0.0543 - -
1.0503 2650 0.0543 - -
1.0543 2660 0.054 - -
1.0583 2670 0.0536 - -
1.0622 2680 0.0531 - -
1.0662 2690 0.0537 - -
1.0702 2700 0.0521 - -
1.0741 2710 0.054 - -
1.0781 2720 0.0513 - -
1.0820 2730 0.0496 - -
1.0860 2740 0.0519 - -
1.0900 2750 0.0529 - -
1.0939 2760 0.0542 - -
1.0979 2770 0.0526 - -
1.1019 2780 0.051 - -
1.1058 2790 0.0531 - -
1.1098 2800 0.0539 - -
1.1138 2810 0.0521 - -
1.1177 2820 0.0539 - -
1.1217 2830 0.0505 - -
1.1256 2840 0.0513 - -
1.1296 2850 0.0521 - -
1.1336 2860 0.0537 - -
1.1375 2870 0.0514 - -
1.1415 2880 0.0511 - -
1.1455 2890 0.0495 - -
1.1494 2900 0.0505 - -
1.1534 2910 0.0517 - -
1.1574 2920 0.0509 - -
1.1613 2930 0.0507 - -
1.1653 2940 0.0535 - -
1.1692 2950 0.0511 - -
1.1732 2960 0.0507 - -
1.1772 2970 0.052 - -
1.1811 2980 0.0494 - -
1.1851 2990 0.0524 - -
1.1891 3000 0.052 0.0555 0.9512
1.1930 3010 0.0536 - -
1.1970 3020 0.0502 - -
1.2010 3030 0.0504 - -
1.2049 3040 0.0532 - -
1.2089 3050 0.0529 - -
1.2128 3060 0.0514 - -
1.2168 3070 0.0504 - -
1.2208 3080 0.0501 - -
1.2247 3090 0.0493 - -
1.2287 3100 0.0507 - -
1.2327 3110 0.0501 - -
1.2366 3120 0.0502 - -
1.2406 3130 0.0491 - -
1.2446 3140 0.0495 - -
1.2485 3150 0.051 - -
1.2525 3160 0.0495 - -
1.2564 3170 0.0534 - -
1.2604 3180 0.0483 - -
1.2644 3190 0.049 - -
1.2683 3200 0.0532 - -
1.2723 3210 0.0481 - -
1.2763 3220 0.0496 - -
1.2802 3230 0.0504 - -
1.2842 3240 0.0477 - -
1.2881 3250 0.0483 - -
1.2921 3260 0.0493 - -
1.2961 3270 0.0491 - -
1.3000 3280 0.0489 - -
1.3040 3290 0.0493 - -
1.3080 3300 0.0507 - -
1.3119 3310 0.0482 - -
1.3159 3320 0.0506 - -
1.3199 3330 0.0486 - -
1.3238 3340 0.0487 - -
1.3278 3350 0.0482 - -
1.3317 3360 0.0492 - -
1.3357 3370 0.049 - -
1.3397 3380 0.0485 - -
1.3436 3390 0.0501 - -
1.3476 3400 0.0505 - -
1.3516 3410 0.0508 - -
1.3555 3420 0.0481 - -
1.3595 3430 0.049 - -
1.3635 3440 0.0495 - -
1.3674 3450 0.0507 - -
1.3714 3460 0.0478 - -
1.3753 3470 0.0522 - -
1.3793 3480 0.0505 - -
1.3833 3490 0.0489 - -
1.3872 3500 0.0504 0.0541 0.9537
1.3912 3510 0.0492 - -
1.3952 3520 0.0469 - -
1.3991 3530 0.0495 - -
1.4031 3540 0.0486 - -
1.4071 3550 0.0506 - -
1.4110 3560 0.0506 - -
1.4150 3570 0.0475 - -
1.4189 3580 0.0483 - -
1.4229 3590 0.0471 - -
1.4269 3600 0.0477 - -
1.4308 3610 0.0494 - -
1.4348 3620 0.0481 - -
1.4388 3630 0.0484 - -
1.4427 3640 0.0505 - -
1.4467 3650 0.0498 - -
1.4507 3660 0.0482 - -
1.4546 3670 0.0488 - -
1.4586 3680 0.0458 - -
1.4625 3690 0.0479 - -
1.4665 3700 0.0474 - -
1.4705 3710 0.0471 - -
1.4744 3720 0.0498 - -
1.4784 3730 0.0495 - -
1.4824 3740 0.0505 - -
1.4863 3750 0.0487 - -
1.4903 3760 0.0485 - -
1.4943 3770 0.0479 - -
1.4982 3780 0.0475 - -
1.5022 3790 0.0462 - -
1.5061 3800 0.0487 - -
1.5101 3810 0.0476 - -
1.5141 3820 0.0485 - -
1.5180 3830 0.0489 - -
1.5220 3840 0.0475 - -
1.5260 3850 0.0484 - -
1.5299 3860 0.0465 - -
1.5339 3870 0.0491 - -
1.5379 3880 0.0477 - -
1.5418 3890 0.0475 - -
1.5458 3900 0.0489 - -
1.5497 3910 0.0459 - -
1.5537 3920 0.0488 - -
1.5577 3930 0.0475 - -
1.5616 3940 0.049 - -
1.5656 3950 0.0469 - -
1.5696 3960 0.0493 - -
1.5735 3970 0.0481 - -
1.5775 3980 0.0478 - -
1.5815 3990 0.0456 - -
1.5854 4000 0.047 0.0528 0.9556
1.5894 4010 0.0481 - -
1.5933 4020 0.0468 - -
1.5973 4030 0.0467 - -
1.6013 4040 0.0448 - -
1.6052 4050 0.0491 - -
1.6092 4060 0.0476 - -
1.6132 4070 0.0459 - -
1.6171 4080 0.0456 - -
1.6211 4090 0.0476 - -
1.6250 4100 0.0443 - -
1.6290 4110 0.0477 - -
1.6330 4120 0.0476 - -
1.6369 4130 0.0466 - -
1.6409 4140 0.0457 - -
1.6449 4150 0.0468 - -
1.6488 4160 0.0462 - -
1.6528 4170 0.0476 - -
1.6568 4180 0.0464 - -
1.6607 4190 0.0467 - -
1.6647 4200 0.0455 - -
1.6686 4210 0.0455 - -
1.6726 4220 0.0474 - -
1.6766 4230 0.0469 - -
1.6805 4240 0.0453 - -
1.6845 4250 0.0464 - -
1.6885 4260 0.0448 - -
1.6924 4270 0.0448 - -
1.6964 4280 0.0461 - -
1.7004 4290 0.0444 - -
1.7043 4300 0.045 - -
1.7083 4310 0.047 - -
1.7122 4320 0.0473 - -
1.7162 4330 0.0453 - -
1.7202 4340 0.0461 - -
1.7241 4350 0.0464 - -
1.7281 4360 0.0474 - -
1.7321 4370 0.0444 - -
1.7360 4380 0.0465 - -
1.7400 4390 0.0454 - -
1.7440 4400 0.045 - -
1.7479 4410 0.0444 - -
1.7519 4420 0.0451 - -
1.7558 4430 0.0454 - -
1.7598 4440 0.0471 - -
1.7638 4450 0.0467 - -
1.7677 4460 0.0466 - -
1.7717 4470 0.0452 - -
1.7757 4480 0.0466 - -
1.7796 4490 0.046 - -
1.7836 4500 0.0462 0.0518 0.9570
1.7876 4510 0.0459 - -
1.7915 4520 0.0455 - -
1.7955 4530 0.0456 - -
1.7994 4540 0.0476 - -
1.8034 4550 0.0465 - -
1.8074 4560 0.0447 - -
1.8113 4570 0.0438 - -
1.8153 4580 0.0463 - -
1.8193 4590 0.0452 - -
1.8232 4600 0.0454 - -
1.8272 4610 0.0459 - -
1.8312 4620 0.044 - -
1.8351 4630 0.0445 - -
1.8391 4640 0.0435 - -
1.8430 4650 0.0435 - -
1.8470 4660 0.0442 - -
1.8510 4670 0.0424 - -
1.8549 4680 0.0438 - -
1.8589 4690 0.0451 - -
1.8629 4700 0.0451 - -
1.8668 4710 0.0455 - -
1.8708 4720 0.0441 - -
1.8748 4730 0.0432 - -
1.8787 4740 0.0445 - -
1.8827 4750 0.0482 - -
1.8866 4760 0.045 - -
1.8906 4770 0.0443 - -
1.8946 4780 0.0451 - -
1.8985 4790 0.0446 - -
1.9025 4800 0.0432 - -
1.9065 4810 0.0432 - -
1.9104 4820 0.0465 - -
1.9144 4830 0.0462 - -
1.9184 4840 0.0443 - -
1.9223 4850 0.0447 - -
1.9263 4860 0.0459 - -
1.9302 4870 0.043 - -
1.9342 4880 0.0456 - -
1.9382 4890 0.0444 - -
1.9421 4900 0.0455 - -
1.9461 4910 0.0427 - -
1.9501 4920 0.0461 - -
1.9540 4930 0.0454 - -
1.9580 4940 0.0447 - -
1.9620 4950 0.0434 - -
1.9659 4960 0.0444 - -
1.9699 4970 0.0451 - -
1.9738 4980 0.044 - -
1.9778 4990 0.0444 - -
1.9818 5000 0.0439 0.0508 0.9581
1.9857 5010 0.0427 - -
1.9897 5020 0.0439 - -
1.9937 5030 0.0427 - -
1.9976 5040 0.0435 - -
2.0016 5050 0.0445 - -
2.0055 5060 0.0433 - -
2.0095 5070 0.0433 - -
2.0135 5080 0.0435 - -
2.0174 5090 0.0438 - -
2.0214 5100 0.0431 - -
2.0254 5110 0.0422 - -
2.0293 5120 0.0436 - -
2.0333 5130 0.0455 - -
2.0373 5140 0.044 - -
2.0412 5150 0.0423 - -
2.0452 5160 0.045 - -
2.0491 5170 0.0422 - -
2.0531 5180 0.0435 - -
2.0571 5190 0.0419 - -
2.0610 5200 0.0427 - -
2.0650 5210 0.0447 - -
2.0690 5220 0.0443 - -
2.0729 5230 0.0429 - -
2.0769 5240 0.0436 - -
2.0809 5250 0.0436 - -
2.0848 5260 0.0439 - -
2.0888 5270 0.0433 - -
2.0927 5280 0.0434 - -
2.0967 5290 0.0428 - -
2.1007 5300 0.0431 - -
2.1046 5310 0.0441 - -
2.1086 5320 0.0443 - -
2.1126 5330 0.0442 - -
2.1165 5340 0.044 - -
2.1205 5350 0.0431 - -
2.1245 5360 0.0432 - -
2.1284 5370 0.0421 - -
2.1324 5380 0.0439 - -
2.1363 5390 0.0436 - -
2.1403 5400 0.0428 - -
2.1443 5410 0.044 - -
2.1482 5420 0.0428 - -
2.1522 5430 0.0428 - -
2.1562 5440 0.0418 - -
2.1601 5450 0.0439 - -
2.1641 5460 0.0415 - -
2.1681 5470 0.0415 - -
2.1720 5480 0.0418 - -
2.1760 5490 0.042 - -
2.1799 5500 0.0418 0.0500 0.9591
2.1839 5510 0.0434 - -
2.1879 5520 0.0424 - -
2.1918 5530 0.0425 - -
2.1958 5540 0.0427 - -
2.1998 5550 0.0418 - -
2.2037 5560 0.04 - -
2.2077 5570 0.0426 - -
2.2117 5580 0.0413 - -
2.2156 5590 0.0429 - -
2.2196 5600 0.0428 - -
2.2235 5610 0.044 - -
2.2275 5620 0.0423 - -
2.2315 5630 0.0398 - -
2.2354 5640 0.0427 - -
2.2394 5650 0.0419 - -
2.2434 5660 0.0424 - -
2.2473 5670 0.0422 - -
2.2513 5680 0.0426 - -
2.2553 5690 0.0434 - -
2.2592 5700 0.044 - -
2.2632 5710 0.0427 - -
2.2671 5720 0.0431 - -
2.2711 5730 0.0416 - -
2.2751 5740 0.0428 - -
2.2790 5750 0.0418 - -
2.2830 5760 0.0418 - -
2.2870 5770 0.0421 - -
2.2909 5780 0.041 - -
2.2949 5790 0.0419 - -
2.2989 5800 0.0422 - -
2.3028 5810 0.0428 - -
2.3068 5820 0.0432 - -
2.3107 5830 0.043 - -
2.3147 5840 0.0424 - -
2.3187 5850 0.0396 - -
2.3226 5860 0.0433 - -
2.3266 5870 0.0413 - -
2.3306 5880 0.0436 - -
2.3345 5890 0.0399 - -
2.3385 5900 0.0426 - -
2.3424 5910 0.0405 - -
2.3464 5920 0.0423 - -
2.3504 5930 0.0409 - -
2.3543 5940 0.0412 - -
2.3583 5950 0.0401 - -
2.3623 5960 0.042 - -
2.3662 5970 0.0397 - -
2.3702 5980 0.0422 - -
2.3742 5990 0.0416 - -
2.3781 6000 0.0422 0.0493 0.9599
2.3821 6010 0.041 - -
2.3860 6020 0.0404 - -
2.3900 6030 0.0404 - -
2.3940 6040 0.0412 - -
2.3979 6050 0.0424 - -
2.4019 6060 0.043 - -
2.4059 6070 0.0416 - -
2.4098 6080 0.0405 - -
2.4138 6090 0.0408 - -
2.4178 6100 0.0413 - -
2.4217 6110 0.0408 - -
2.4257 6120 0.0407 - -
2.4296 6130 0.041 - -
2.4336 6140 0.0387 - -
2.4376 6150 0.0408 - -
2.4415 6160 0.0413 - -
2.4455 6170 0.0429 - -
2.4495 6180 0.0394 - -
2.4534 6190 0.041 - -
2.4574 6200 0.0419 - -
2.4614 6210 0.0395 - -
2.4653 6220 0.0405 - -
2.4693 6230 0.0412 - -
2.4732 6240 0.0439 - -
2.4772 6250 0.0423 - -
2.4812 6260 0.0423 - -
2.4851 6270 0.0406 - -
2.4891 6280 0.0402 - -
2.4931 6290 0.0428 - -
2.4970 6300 0.0422 - -
2.5010 6310 0.0399 - -
2.5050 6320 0.0409 - -
2.5089 6330 0.0412 - -
2.5129 6340 0.0403 - -
2.5168 6350 0.04 - -
2.5208 6360 0.0412 - -
2.5248 6370 0.0424 - -
2.5287 6380 0.0409 - -
2.5327 6390 0.0409 - -
2.5367 6400 0.0418 - -
2.5406 6410 0.0403 - -
2.5446 6420 0.0413 - -
2.5486 6430 0.038 - -
2.5525 6440 0.0414 - -
2.5565 6450 0.0409 - -
2.5604 6460 0.0407 - -
2.5644 6470 0.0406 - -
2.5684 6480 0.0392 - -
2.5723 6490 0.0417 - -
2.5763 6500 0.0391 0.0487 0.9605
2.5803 6510 0.039 - -
2.5842 6520 0.0414 - -
2.5882 6530 0.0411 - -
2.5922 6540 0.0395 - -
2.5961 6550 0.0405 - -
2.6001 6560 0.0392 - -
2.6040 6570 0.041 - -
2.6080 6580 0.0387 - -
2.6120 6590 0.0409 - -
2.6159 6600 0.0416 - -
2.6199 6610 0.0399 - -
2.6239 6620 0.0395 - -
2.6278 6630 0.0416 - -
2.6318 6640 0.0397 - -
2.6358 6650 0.041 - -
2.6397 6660 0.0422 - -
2.6437 6670 0.0404 - -
2.6476 6680 0.0405 - -
2.6516 6690 0.0413 - -
2.6556 6700 0.0405 - -
2.6595 6710 0.04 - -
2.6635 6720 0.0383 - -
2.6675 6730 0.0412 - -
2.6714 6740 0.0416 - -
2.6754 6750 0.0405 - -
2.6793 6760 0.0423 - -
2.6833 6770 0.0419 - -
2.6873 6780 0.0405 - -
2.6912 6790 0.0409 - -
2.6952 6800 0.04 - -
2.6992 6810 0.0397 - -
2.7031 6820 0.039 - -
2.7071 6830 0.0393 - -
2.7111 6840 0.0413 - -
2.7150 6850 0.039 - -
2.7190 6860 0.04 - -
2.7229 6870 0.0409 - -
2.7269 6880 0.0403 - -
2.7309 6890 0.0397 - -
2.7348 6900 0.0404 - -
2.7388 6910 0.0396 - -
2.7428 6920 0.04 - -
2.7467 6930 0.0397 - -
2.7507 6940 0.0393 - -
2.7547 6950 0.037 - -
2.7586 6960 0.0383 - -
2.7626 6970 0.04 - -
2.7665 6980 0.0406 - -
2.7705 6990 0.0394 - -
2.7745 7000 0.0385 0.0482 0.9609
2.7784 7010 0.0383 - -
2.7824 7020 0.0403 - -
2.7864 7030 0.04 - -
2.7903 7040 0.0395 - -
2.7943 7050 0.039 - -
2.7983 7060 0.0398 - -
2.8022 7070 0.0401 - -
2.8062 7080 0.0401 - -
2.8101 7090 0.0395 - -
2.8141 7100 0.0396 - -
2.8181 7110 0.0395 - -
2.8220 7120 0.0411 - -
2.8260 7130 0.0386 - -
2.8300 7140 0.0382 - -
2.8339 7150 0.0386 - -
2.8379 7160 0.0389 - -
2.8419 7170 0.0396 - -
2.8458 7180 0.0394 - -
2.8498 7190 0.04 - -
2.8537 7200 0.0401 - -
2.8577 7210 0.0412 - -
2.8617 7220 0.0383 - -
2.8656 7230 0.0392 - -
2.8696 7240 0.0394 - -
2.8736 7250 0.0399 - -
2.8775 7260 0.0403 - -
2.8815 7270 0.0384 - -
2.8855 7280 0.0397 - -
2.8894 7290 0.0407 - -
2.8934 7300 0.0386 - -
2.8973 7310 0.0385 - -
2.9013 7320 0.0405 - -
2.9053 7330 0.0389 - -
2.9092 7340 0.0362 - -
2.9132 7350 0.0397 - -
2.9172 7360 0.0393 - -
2.9211 7370 0.0397 - -
2.9251 7380 0.0386 - -
2.9291 7390 0.0388 - -
2.9330 7400 0.0366 - -
2.9370 7410 0.0394 - -
2.9409 7420 0.0396 - -
2.9449 7430 0.0393 - -
2.9489 7440 0.0401 - -
2.9528 7450 0.0391 - -
2.9568 7460 0.0388 - -
2.9608 7470 0.0386 - -
2.9647 7480 0.0391 - -
2.9687 7490 0.037 - -
2.9727 7500 0.0386 0.0477 0.9613
2.9766 7510 0.0392 - -
2.9806 7520 0.0399 - -
2.9845 7530 0.0385 - -
2.9885 7540 0.0381 - -
2.9925 7550 0.0392 - -
2.9964 7560 0.0386 - -
3.0004 7570 0.0394 - -
3.0044 7580 0.0401 - -
3.0083 7590 0.0404 - -
3.0123 7600 0.0384 - -
3.0163 7610 0.0381 - -
3.0202 7620 0.0383 - -
3.0242 7630 0.0389 - -
3.0281 7640 0.0364 - -
3.0321 7650 0.0399 - -
3.0361 7660 0.0383 - -
3.0400 7670 0.0401 - -
3.0440 7680 0.0388 - -
3.0480 7690 0.0389 - -
3.0519 7700 0.036 - -
3.0559 7710 0.0403 - -
3.0598 7720 0.0376 - -
3.0638 7730 0.0387 - -
3.0678 7740 0.0405 - -
3.0717 7750 0.0399 - -
3.0757 7760 0.0382 - -
3.0797 7770 0.0376 - -
3.0836 7780 0.0393 - -
3.0876 7790 0.0388 - -
3.0916 7800 0.0395 - -
3.0955 7810 0.0391 - -
3.0995 7820 0.0392 - -
3.1034 7830 0.0371 - -
3.1074 7840 0.039 - -
3.1114 7850 0.0395 - -
3.1153 7860 0.0385 - -
3.1193 7870 0.0362 - -
3.1233 7880 0.0375 - -
3.1272 7890 0.0376 - -
3.1312 7900 0.0384 - -
3.1352 7910 0.0378 - -
3.1391 7920 0.0393 - -
3.1431 7930 0.0378 - -
3.1470 7940 0.0404 - -
3.1510 7950 0.0361 - -
3.1550 7960 0.0369 - -
3.1589 7970 0.0396 - -
3.1629 7980 0.0404 - -
3.1669 7990 0.0386 - -
3.1708 8000 0.038 0.0473 0.9616
3.1748 8010 0.0372 - -
3.1788 8020 0.0373 - -
3.1827 8030 0.0369 - -
3.1867 8040 0.0371 - -
3.1906 8050 0.0386 - -
3.1946 8060 0.038 - -
3.1986 8070 0.0366 - -
3.2025 8080 0.0378 - -
3.2065 8090 0.0379 - -
3.2105 8100 0.038 - -
3.2144 8110 0.0374 - -
3.2184 8120 0.0388 - -
3.2224 8130 0.038 - -
3.2263 8140 0.0363 - -
3.2303 8150 0.0369 - -
3.2342 8160 0.0371 - -
3.2382 8170 0.0377 - -
3.2422 8180 0.0364 - -
3.2461 8190 0.0372 - -
3.2501 8200 0.0403 - -
3.2541 8210 0.0385 - -
3.2580 8220 0.0385 - -
3.2620 8230 0.0386 - -
3.2660 8240 0.0369 - -
3.2699 8250 0.039 - -
3.2739 8260 0.0365 - -
3.2778 8270 0.0382 - -
3.2818 8280 0.0354 - -
3.2858 8290 0.0393 - -
3.2897 8300 0.0387 - -
3.2937 8310 0.0366 - -
3.2977 8320 0.0391 - -
3.3016 8330 0.0382 - -
3.3056 8340 0.0377 - -
3.3096 8350 0.0369 - -
3.3135 8360 0.0384 - -
3.3175 8370 0.0379 - -
3.3214 8380 0.0372 - -
3.3254 8390 0.0391 - -
3.3294 8400 0.0378 - -
3.3333 8410 0.0393 - -
3.3373 8420 0.0373 - -
3.3413 8430 0.0394 - -
3.3452 8440 0.0367 - -
3.3492 8450 0.0373 - -
3.3532 8460 0.0362 - -
3.3571 8470 0.0372 - -
3.3611 8480 0.0396 - -
3.3650 8490 0.0392 - -
3.3690 8500 0.0374 0.0470 0.9616
3.3730 8510 0.0378 - -
3.3769 8520 0.0385 - -
3.3809 8530 0.0375 - -
3.3849 8540 0.0392 - -
3.3888 8550 0.0378 - -
3.3928 8560 0.0366 - -
3.3967 8570 0.0383 - -
3.4007 8580 0.0372 - -
3.4047 8590 0.038 - -
3.4086 8600 0.0384 - -
3.4126 8610 0.0359 - -
3.4166 8620 0.0377 - -
3.4205 8630 0.0387 - -
3.4245 8640 0.0365 - -
3.4285 8650 0.0359 - -
3.4324 8660 0.0358 - -
3.4364 8670 0.0366 - -
3.4403 8680 0.0369 - -
3.4443 8690 0.0365 - -
3.4483 8700 0.0366 - -
3.4522 8710 0.0357 - -
3.4562 8720 0.036 - -
3.4602 8730 0.0365 - -
3.4641 8740 0.0381 - -
3.4681 8750 0.0399 - -
3.4721 8760 0.0388 - -
3.4760 8770 0.0366 - -
3.4800 8780 0.0346 - -
3.4839 8790 0.0371 - -
3.4879 8800 0.0376 - -
3.4919 8810 0.0374 - -
3.4958 8820 0.0354 - -
3.4998 8830 0.0363 - -
3.5038 8840 0.0374 - -
3.5077 8850 0.0373 - -
3.5117 8860 0.0347 - -
3.5157 8870 0.0374 - -
3.5196 8880 0.0349 - -
3.5236 8890 0.0376 - -
3.5275 8900 0.0363 - -
3.5315 8910 0.036 - -
3.5355 8920 0.0378 - -
3.5394 8930 0.0376 - -
3.5434 8940 0.039 - -
3.5474 8950 0.0373 - -
3.5513 8960 0.0361 - -
3.5553 8970 0.0356 - -
3.5593 8980 0.0357 - -
3.5632 8990 0.0371 - -
3.5672 9000 0.0374 0.0468 0.9617
3.5711 9010 0.0372 - -
3.5751 9020 0.0369 - -
3.5791 9030 0.0362 - -
3.5830 9040 0.0367 - -
3.5870 9050 0.0388 - -
3.5910 9060 0.0369 - -
3.5949 9070 0.0375 - -
3.5989 9080 0.0374 - -
3.6029 9090 0.0365 - -
3.6068 9100 0.0363 - -
3.6108 9110 0.0396 - -
3.6147 9120 0.0372 - -
3.6187 9130 0.0363 - -
3.6227 9140 0.0363 - -
3.6266 9150 0.0366 - -
3.6306 9160 0.0352 - -
3.6346 9170 0.038 - -
3.6385 9180 0.0359 - -
3.6425 9190 0.0374 - -
3.6465 9200 0.0363 - -
3.6504 9210 0.0356 - -
3.6544 9220 0.0354 - -
3.6583 9230 0.0377 - -
3.6623 9240 0.0361 - -
3.6663 9250 0.0374 - -
3.6702 9260 0.0373 - -
3.6742 9270 0.0357 - -
3.6782 9280 0.0359 - -
3.6821 9290 0.037 - -
3.6861 9300 0.0366 - -
3.6901 9310 0.0374 - -
3.6940 9320 0.0376 - -
3.6980 9330 0.0373 - -
3.7019 9340 0.0363 - -
3.7059 9350 0.0381 - -
3.7099 9360 0.0353 - -
3.7138 9370 0.0363 - -
3.7178 9380 0.0377 - -
3.7218 9390 0.0364 - -
3.7257 9400 0.0378 - -
3.7297 9410 0.0376 - -
3.7337 9420 0.0376 - -
3.7376 9430 0.0368 - -
3.7416 9440 0.0381 - -
3.7455 9450 0.0358 - -
3.7495 9460 0.0362 - -
3.7535 9470 0.038 - -
3.7574 9480 0.0371 - -
3.7614 9490 0.0371 - -
3.7654 9500 0.0353 0.0465 0.9617
3.7693 9510 0.0381 - -
3.7733 9520 0.0362 - -
3.7772 9530 0.0352 - -
3.7812 9540 0.0363 - -
3.7852 9550 0.0352 - -
3.7891 9560 0.0367 - -
3.7931 9570 0.035 - -
3.7971 9580 0.0367 - -
3.8010 9590 0.0369 - -
3.8050 9600 0.0365 - -
3.8090 9610 0.0369 - -
3.8129 9620 0.0359 - -
3.8169 9630 0.0367 - -
3.8208 9640 0.0384 - -
3.8248 9650 0.0359 - -
3.8288 9660 0.0368 - -
3.8327 9670 0.0363 - -
3.8367 9680 0.0374 - -
3.8407 9690 0.0372 - -
3.8446 9700 0.0361 - -
3.8486 9710 0.0381 - -
3.8526 9720 0.0342 - -
3.8565 9730 0.0348 - -
3.8605 9740 0.0372 - -
3.8644 9750 0.0377 - -
3.8684 9760 0.0356 - -
3.8724 9770 0.0365 - -
3.8763 9780 0.0368 - -
3.8803 9790 0.0366 - -
3.8843 9800 0.0383 - -
3.8882 9810 0.0353 - -
3.8922 9820 0.0377 - -
3.8962 9830 0.0364 - -
3.9001 9840 0.0362 - -
3.9041 9850 0.0351 - -
3.9080 9860 0.0381 - -
3.9120 9870 0.0368 - -
3.9160 9880 0.0361 - -
3.9199 9890 0.0356 - -
3.9239 9900 0.035 - -
3.9279 9910 0.0345 - -
3.9318 9920 0.0378 - -
3.9358 9930 0.036 - -
3.9398 9940 0.0367 - -
3.9437 9950 0.0356 - -
3.9477 9960 0.034 - -
3.9516 9970 0.0377 - -
3.9556 9980 0.0379 - -
3.9596 9990 0.0388 - -
3.9635 10000 0.0362 0.0463 0.9618

Framework Versions

  • Python: 3.10.10
  • Sentence Transformers: 3.0.1
  • Transformers: 4.45.0.dev0
  • PyTorch: 2.2.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, 
    title={Dimensionality Reduction by Learning an Invariant Mapping}, 
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}
Downloads last month
9
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for IconicAI/all-mpnet-base-v2-anteater

Finetuned
(165)
this model

Evaluation results