RoBERTa_Combined_Generated_v2_1500
This model is a fine-tuned version of ICT2214Team7/RoBERTa_Test_Training on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0555
- Precision: 0.8707
- Recall: 0.9456
- F1: 0.9066
- Accuracy: 0.9847
- Report: {'AGE': {'precision': 0.88, 'recall': 0.9565217391304348, 'f1-score': 0.9166666666666666, 'support': 46}, 'LOC': {'precision': 0.8175675675675675, 'recall': 0.9307692307692308, 'f1-score': 0.8705035971223021, 'support': 130}, 'NAT': {'precision': 0.8888888888888888, 'recall': 0.9552238805970149, 'f1-score': 0.9208633093525178, 'support': 67}, 'ORG': {'precision': 0.9038461538461539, 'recall': 0.9591836734693877, 'f1-score': 0.9306930693069307, 'support': 49}, 'PER': {'precision': 0.9473684210526315, 'recall': 0.9473684210526315, 'f1-score': 0.9473684210526315, 'support': 57}, 'micro avg': {'precision': 0.8707124010554089, 'recall': 0.9455587392550143, 'f1-score': 0.9065934065934066, 'support': 349}, 'macro avg': {'precision': 0.8875342062710484, 'recall': 0.9498133890037399, 'f1-score': 0.9172190127002098, 'support': 349}, 'weighted avg': {'precision': 0.8728017217128964, 'recall': 0.9455587392550143, 'f1-score': 0.9072605627943388, 'support': 349}}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Report |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 150 | 0.0623 | 0.8289 | 0.9026 | 0.8642 | 0.9784 | {'AGE': {'precision': 0.9555555555555556, 'recall': 0.9347826086956522, 'f1-score': 0.945054945054945, 'support': 46}, 'LOC': {'precision': 0.7588652482269503, 'recall': 0.823076923076923, 'f1-score': 0.7896678966789668, 'support': 130}, 'NAT': {'precision': 0.7804878048780488, 'recall': 0.9552238805970149, 'f1-score': 0.8590604026845637, 'support': 67}, 'ORG': {'precision': 0.8867924528301887, 'recall': 0.9591836734693877, 'f1-score': 0.9215686274509803, 'support': 49}, 'PER': {'precision': 0.9152542372881356, 'recall': 0.9473684210526315, 'f1-score': 0.9310344827586206, 'support': 57}, 'micro avg': {'precision': 0.8289473684210527, 'recall': 0.9025787965616046, 'f1-score': 0.8641975308641976, 'support': 349}, 'macro avg': {'precision': 0.8593910597557757, 'recall': 0.9239271013783219, 'f1-score': 0.8892772709256154, 'support': 349}, 'weighted avg': {'precision': 0.8324442477535569, 'recall': 0.9025787965616046, 'f1-score': 0.8650780208681901, 'support': 349}} |
No log | 2.0 | 300 | 0.0533 | 0.8628 | 0.9370 | 0.8984 | 0.9837 | {'AGE': {'precision': 0.8775510204081632, 'recall': 0.9347826086956522, 'f1-score': 0.9052631578947369, 'support': 46}, 'LOC': {'precision': 0.7986577181208053, 'recall': 0.9153846153846154, 'f1-score': 0.8530465949820788, 'support': 130}, 'NAT': {'precision': 0.9014084507042254, 'recall': 0.9552238805970149, 'f1-score': 0.927536231884058, 'support': 67}, 'ORG': {'precision': 0.8867924528301887, 'recall': 0.9591836734693877, 'f1-score': 0.9215686274509803, 'support': 49}, 'PER': {'precision': 0.9473684210526315, 'recall': 0.9473684210526315, 'f1-score': 0.9473684210526315, 'support': 57}, 'micro avg': {'precision': 0.862796833773087, 'recall': 0.9369627507163324, 'f1-score': 0.8983516483516483, 'support': 349}, 'macro avg': {'precision': 0.882355612623203, 'recall': 0.9423886398398604, 'f1-score': 0.9109566066528971, 'support': 349}, 'weighted avg': {'precision': 0.8654442598290617, 'recall': 0.9369627507163324, 'f1-score': 0.8992548793471578, 'support': 349}} |
No log | 3.0 | 450 | 0.0555 | 0.8707 | 0.9456 | 0.9066 | 0.9847 | {'AGE': {'precision': 0.88, 'recall': 0.9565217391304348, 'f1-score': 0.9166666666666666, 'support': 46}, 'LOC': {'precision': 0.8175675675675675, 'recall': 0.9307692307692308, 'f1-score': 0.8705035971223021, 'support': 130}, 'NAT': {'precision': 0.8888888888888888, 'recall': 0.9552238805970149, 'f1-score': 0.9208633093525178, 'support': 67}, 'ORG': {'precision': 0.9038461538461539, 'recall': 0.9591836734693877, 'f1-score': 0.9306930693069307, 'support': 49}, 'PER': {'precision': 0.9473684210526315, 'recall': 0.9473684210526315, 'f1-score': 0.9473684210526315, 'support': 57}, 'micro avg': {'precision': 0.8707124010554089, 'recall': 0.9455587392550143, 'f1-score': 0.9065934065934066, 'support': 349}, 'macro avg': {'precision': 0.8875342062710484, 'recall': 0.9498133890037399, 'f1-score': 0.9172190127002098, 'support': 349}, 'weighted avg': {'precision': 0.8728017217128964, 'recall': 0.9455587392550143, 'f1-score': 0.9072605627943388, 'support': 349}} |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 7
Model tree for ICT2214Team7/RoBERTa_Combined_Generated_v2_1500
Base model
distilbert/distilroberta-base
Finetuned
ICT2214Team7/RoBERTa_Test_Training