RoBERTa_Combined_Generated_v1.1_epoch_6

This model is a fine-tuned version of ICT2214Team7/RoBERTa_Test_Training on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0004
  • Precision: 0.9980
  • Recall: 0.9980
  • F1: 0.9980
  • Accuracy: 0.9996
  • Report: {'AGE': {'precision': 1.0, 'recall': 0.9444444444444444, 'f1-score': 0.9714285714285714, 'support': 18}, 'LOC': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 101}, 'NAT': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 25}, 'ORG': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 173}, 'PER': {'precision': 0.9943502824858758, 'recall': 1.0, 'f1-score': 0.9971671388101983, 'support': 176}, 'micro avg': {'precision': 0.9979716024340771, 'recall': 0.9979716024340771, 'f1-score': 0.9979716024340771, 'support': 493}, 'macro avg': {'precision': 0.9988700564971751, 'recall': 0.9888888888888889, 'f1-score': 0.9937191420477539, 'support': 493}, 'weighted avg': {'precision': 0.9979830623073309, 'recall': 0.9979716024340771, 'f1-score': 0.9979454984103634, 'support': 493}}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Report
No log 1.0 200 0.0074 0.9799 0.9899 0.9849 0.9980 {'AGE': {'precision': 1.0, 'recall': 0.9444444444444444, 'f1-score': 0.9714285714285714, 'support': 18}, 'LOC': {'precision': 0.9801980198019802, 'recall': 0.9801980198019802, 'f1-score': 0.9801980198019802, 'support': 101}, 'NAT': {'precision': 1.0, 'recall': 0.96, 'f1-score': 0.9795918367346939, 'support': 25}, 'ORG': {'precision': 0.9774011299435028, 'recall': 1.0, 'f1-score': 0.9885714285714285, 'support': 173}, 'PER': {'precision': 0.9776536312849162, 'recall': 0.9943181818181818, 'f1-score': 0.9859154929577464, 'support': 176}, 'micro avg': {'precision': 0.9799196787148594, 'recall': 0.9898580121703854, 'f1-score': 0.9848637739656912, 'support': 493}, 'macro avg': {'precision': 0.9870505562060797, 'recall': 0.9757921292129212, 'f1-score': 0.981141069898884, 'support': 493}, 'weighted avg': {'precision': 0.9800353642725582, 'recall': 0.9898580121703854, 'f1-score': 0.9848265600557851, 'support': 493}}
No log 2.0 400 0.0019 0.9959 0.9959 0.9959 0.9995 {'AGE': {'precision': 1.0, 'recall': 0.9444444444444444, 'f1-score': 0.9714285714285714, 'support': 18}, 'LOC': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 101}, 'NAT': {'precision': 1.0, 'recall': 0.96, 'f1-score': 0.9795918367346939, 'support': 25}, 'ORG': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 173}, 'PER': {'precision': 0.9887640449438202, 'recall': 1.0, 'f1-score': 0.9943502824858756, 'support': 176}, 'micro avg': {'precision': 0.9959432048681541, 'recall': 0.9959432048681541, 'f1-score': 0.9959432048681541, 'support': 493}, 'macro avg': {'precision': 0.997752808988764, 'recall': 0.9808888888888889, 'f1-score': 0.9890741381298283, 'support': 493}, 'weighted avg': {'precision': 0.9959887868359277, 'recall': 0.9959432048681541, 'f1-score': 0.995904989698977, 'support': 493}}
0.0654 3.0 600 0.0015 0.9959 0.9959 0.9959 0.9995 {'AGE': {'precision': 1.0, 'recall': 0.9444444444444444, 'f1-score': 0.9714285714285714, 'support': 18}, 'LOC': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 101}, 'NAT': {'precision': 1.0, 'recall': 0.96, 'f1-score': 0.9795918367346939, 'support': 25}, 'ORG': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 173}, 'PER': {'precision': 0.9887640449438202, 'recall': 1.0, 'f1-score': 0.9943502824858756, 'support': 176}, 'micro avg': {'precision': 0.9959432048681541, 'recall': 0.9959432048681541, 'f1-score': 0.9959432048681541, 'support': 493}, 'macro avg': {'precision': 0.997752808988764, 'recall': 0.9808888888888889, 'f1-score': 0.9890741381298283, 'support': 493}, 'weighted avg': {'precision': 0.9959887868359277, 'recall': 0.9959432048681541, 'f1-score': 0.995904989698977, 'support': 493}}
0.0654 4.0 800 0.0007 0.9919 0.9959 0.9939 0.9996 {'AGE': {'precision': 0.8947368421052632, 'recall': 0.9444444444444444, 'f1-score': 0.918918918918919, 'support': 18}, 'LOC': {'precision': 0.9900990099009901, 'recall': 0.9900990099009901, 'f1-score': 0.9900990099009901, 'support': 101}, 'NAT': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 25}, 'ORG': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 173}, 'PER': {'precision': 0.9943502824858758, 'recall': 1.0, 'f1-score': 0.9971671388101983, 'support': 176}, 'micro avg': {'precision': 0.9919191919191919, 'recall': 0.9959432048681541, 'f1-score': 0.9939271255060729, 'support': 493}, 'macro avg': {'precision': 0.9758372268984259, 'recall': 0.986908690869087, 'f1-score': 0.9812370135260216, 'support': 493}, 'weighted avg': {'precision': 0.9921113851428172, 'recall': 0.9959432048681541, 'f1-score': 0.9939999127203558, 'support': 493}}
0.0026 5.0 1000 0.0005 0.9960 0.9980 0.9970 0.9998 {'AGE': {'precision': 0.9444444444444444, 'recall': 0.9444444444444444, 'f1-score': 0.9444444444444444, 'support': 18}, 'LOC': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 101}, 'NAT': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 25}, 'ORG': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 173}, 'PER': {'precision': 0.9943502824858758, 'recall': 1.0, 'f1-score': 0.9971671388101983, 'support': 176}, 'micro avg': {'precision': 0.9959514170040485, 'recall': 0.9979716024340771, 'f1-score': 0.9969604863221885, 'support': 493}, 'macro avg': {'precision': 0.987758945386064, 'recall': 0.9888888888888889, 'f1-score': 0.9883223166509285, 'support': 493}, 'weighted avg': {'precision': 0.9959546647414079, 'recall': 0.9979716024340771, 'f1-score': 0.9969602767354866, 'support': 493}}
0.0026 6.0 1200 0.0004 0.9980 0.9980 0.9980 0.9996 {'AGE': {'precision': 1.0, 'recall': 0.9444444444444444, 'f1-score': 0.9714285714285714, 'support': 18}, 'LOC': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 101}, 'NAT': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 25}, 'ORG': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 173}, 'PER': {'precision': 0.9943502824858758, 'recall': 1.0, 'f1-score': 0.9971671388101983, 'support': 176}, 'micro avg': {'precision': 0.9979716024340771, 'recall': 0.9979716024340771, 'f1-score': 0.9979716024340771, 'support': 493}, 'macro avg': {'precision': 0.9988700564971751, 'recall': 0.9888888888888889, 'f1-score': 0.9937191420477539, 'support': 493}, 'weighted avg': {'precision': 0.9979830623073309, 'recall': 0.9979716024340771, 'f1-score': 0.9979454984103634, 'support': 493}}

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
19
Safetensors
Model size
81.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ICT2214Team7/RoBERTa_Combined_Generated_v1.1_epoch_6

Finetuned
(23)
this model