Edit model card

PPO Agent playing seals/CartPole-v0

This is a trained model of a PPO agent playing seals/CartPole-v0 using the stable-baselines3 library and the RL Zoo.

The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.

Usage (with SB3 RL Zoo)

RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib

# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo ppo --env seals/CartPole-v0 -orga HumanCompatibleAI -f logs/
python enjoy.py --algo ppo --env seals/CartPole-v0  -f logs/

If you installed the RL Zoo3 via pip (pip install rl_zoo3), from anywhere you can do:

python -m rl_zoo3.load_from_hub --algo ppo --env seals/CartPole-v0 -orga HumanCompatibleAI -f logs/
rl_zoo3 enjoy --algo ppo --env seals/CartPole-v0  -f logs/

Training (with the RL Zoo)

python train.py --algo ppo --env seals/CartPole-v0 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo ppo --env seals/CartPole-v0 -f logs/ -orga HumanCompatibleAI


OrderedDict([('batch_size', 256),
             ('clip_range', 0.4),
             ('ent_coef', 0.008508727919228772),
             ('gae_lambda', 0.9),
             ('gamma', 0.9999),
             ('learning_rate', 0.0012403278189645594),
             ('max_grad_norm', 0.8),
             ('n_envs', 8),
             ('n_epochs', 10),
             ('n_steps', 512),
             ('n_timesteps', 100000.0),
             ('policy', 'MlpPolicy'),
              {'activation_fn': <class 'torch.nn.modules.activation.ReLU'>,
               'net_arch': [{'pi': [64, 64], 'vf': [64, 64]}]}),
             ('vf_coef', 0.489343896591493),
             ('normalize', False)])
Downloads last month
Video Preview

Evaluation results