File size: 9,759 Bytes
5b86ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from torch import nn
from transformers.activations import ACT2FN

import torch.nn.functional as F

class MLP(nn.Module):
    def __init__(self, activation, input_size, intermediate_size, output_size):
        super().__init__()
        self.input_size = input_size
        self.intermediate_size = intermediate_size
        self.output_size = output_size

        self.gate_proj = nn.Linear(input_size, intermediate_size, bias=False)
        self.up_proj = nn.Linear(input_size, intermediate_size, bias=False)
        self.down_proj = nn.Linear(intermediate_size, output_size, bias=False)
        self.act_fn = ACT2FN[activation]

    def forward(self, x):
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))


# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm
class RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        RMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


class DecoupledEmbedding(nn.Embedding):
    # Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding
    """
    Implements a decoupling of parameters to allow freezing (or not) a subset of the embeddings.
    In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `num_additional_embeddings` > 0, then it will create `num_additional_embeddings` additional parameters that are always trained.
    If `num_additional_embeddings=0`, then the module defaults back to the regular behavior of `nn.Embedding`.
    """

    def __init__(
        self,
        num_embeddings,
        num_additional_embeddings,
        embedding_dim,
        partially_freeze=False,
        device=None,
        dtype=None,
        padding_idx=None,
        **kwargs,
    ) -> None:
        """
        num_additional_embeddings: int. Number of additional embeddings. Only useful when you `partially_freeze=True`.
        partially_freeze: bool. If True, the regular `weight` will be frozen. `additional_weight` is never frozen.

        Note: there are a lot of other parameters to initialize a standard `nn.Embedding` such as `padding_idx`, `max_norm` or `norm_type`. We are not supporting these.
        """
        if padding_idx is not None and padding_idx > num_embeddings:
            raise ValueError(f"padding_idx must be within num_embeddings. Got {padding_idx} and {num_embeddings}")
        super().__init__(
            num_embeddings=num_embeddings,
            embedding_dim=embedding_dim,
            device=device,
            dtype=dtype,
            padding_idx=padding_idx,
            **kwargs,
        )
        self.num_embeddings = num_embeddings
        self.padding_idx = padding_idx
        self.num_additional_embeddings = num_additional_embeddings
        self.partially_freeze = partially_freeze

        if partially_freeze:
            self.weight.requires_grad_(False)

        if self.num_additional_embeddings > 0:
            self.additional_embedding = nn.Embedding(
                num_embeddings=self.num_additional_embeddings,
                embedding_dim=embedding_dim,
                device=device,
                dtype=dtype,
            )

    def forward(self, input_ids):
        """
        we have 2 embeddings, with different indices - one pretrained self.weight and another
        self.additional_embedding.weight that is being trained.

        in order to make a lookup of the input ids, we:
        1. find out the indices of the entries belonging to the 2nd embedding
        2. extract those values while subtracting the size of the first embedding (num_embeddings),
           since the 2nd embedding starts from 0 and not num_embeddings
        3. perform the 2nd embedding lookup
        4. now we handle the 1st embedding, we overwrite indices belonging to the 2nd embedding with a padding index
        5. perform the 1st embedding lookup
        6. now we overwrite the values in the 1st embedding lookup with the values of the 2nd embedding lookup

        note: for the 1st embedding lookup we could have looked up only the low indices and not do
        the padding, but then we have to create a new tensor and populate it with 2 tensors that are
        spread out across various indices - i.e. not a simple concat - I haven't benchmarked the
        complex case if it's any faster, given that seqlens are usually relatively short it's
        probably not faster or if faster not by much - but might be a good idea to measure.

        """
        if self.num_additional_embeddings == 0:
            return self.additional_embedding(input_ids)

        # Clone so that we don't modify the original input_ids later on
        input_ids = input_ids.clone()
        additional_vocab_indices = torch.where(input_ids >= self.num_embeddings)
        input_ids_additional_vocab = input_ids[additional_vocab_indices]
        additional_embeddings = self.additional_embedding(input_ids_additional_vocab - self.num_embeddings)

        # for successful lookup replace input_ids with 0, the results of these will be discarded anyway
        input_ids[additional_vocab_indices] = 0
        full_vector = F.embedding(input_ids, self.weight)

        # overwrite the records with high indices
        full_vector[additional_vocab_indices] = additional_embeddings

        return full_vector

    def extra_repr(self) -> str:
        return "num_embeddings={}, num_additional_embeddings={}, embedding_dim={}, partially_freeze={}".format(
            self.num_embeddings,
            self.num_additional_embeddings,
            self.embedding_dim,
            self.partially_freeze,
        )

    @classmethod
    def from_pretrained(cls, embeddings, freeze=True, **kwargs):
        raise NotImplementedError


class DecoupledLinear(nn.Linear):
    # Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear
    """
    Implements a decoupling of parameters to allow freezing (or not) a subset of the parameters.
    In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `out_additional_features` > 0, then it will create `out_additional_features * in_features` additional parameters that are always trained.
    If `out_additional_features=0`, then the module defaults back to the regular behavior of `nn.Linear`.
    """

    def __init__(
        self,
        in_features: int,
        out_features: int,
        out_additional_features: int = 0,
        bias: bool = True,
        partially_freeze: bool = True,
        device=None,
        dtype=None,
    ) -> None:
        """
        out_additional_features: int. Number of additional trainable dimensions. Only makes sense when `partially_freeze=True`.
        partially_freeze: bool. If True, the regular `weight` will be frozen and extra parameters (if any) will be trainable. If False, default to the regular behavior of nn.Linear.
        """
        super().__init__(in_features, out_features, bias, device, dtype)
        self.out_additional_features = out_additional_features
        self.partially_freeze = partially_freeze

        self.in_features = in_features
        self.out_features = out_features

        if partially_freeze:
            self.weight.requires_grad_(False)
            if bias:
                self.bias.requires_grad_(False)

        if out_additional_features > 0:
            self.additional_fc = nn.Linear(
                in_features=in_features,
                out_features=out_additional_features,
                bias=bias,
                device=device,
                dtype=dtype,
            )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        output = F.linear(input, self.weight, self.bias)

        if self.out_additional_features > 0:
            additional_features = self.additional_fc(input)
            output = torch.cat((output, additional_features), -1)

        return output

    def extra_repr(self) -> str:
        """Overwriting `nn.Linear.extra_repr` to include new parameters."""
        return "in_features={}, out_features={}, out_additional_features={}, bias={}, partially_freeze={}".format(
            self.in_features,
            self.out_features,
            self.out_additional_features,
            self.bias is not None,
            self.partially_freeze,
        )