VictorSanh commited on
Commit
5b86ca4
1 Parent(s): 2bb004c

there you go

Browse files
README.md CHANGED
@@ -1,3 +1,167 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - en
5
+ datasets:
6
+ - HuggingFaceM4/WebSight
7
+ tags:
8
+ - code
9
  ---
10
+
11
+
12
+ # Model Description
13
+
14
+ This model converts screenshots of website components into HTML/Tailwind CSS codes.
15
+
16
+ It is based on an early checkpoint of our forthcoming vision-language foundation model, which has been further fine-tuned with DoRA using the [Websight-v1](https://huggingface.co/datasets/HuggingFaceM4/Websight) dataset.
17
+
18
+ The base model is built upon Mistral-7B and SigLIP-SO400M, and uses the Patch n’ Pack strategy to preserve the original aspect ratio of the input images, with a resolution of up to 980 pixels for each side.
19
+ Further insights into the model’s architecture and its training process will be detailed upon its release.
20
+
21
+ The goal of open-sourcing the WebSight dataset along with the model Sightseer is to kick off an effort to develop improved models capable of converting a website screenshot into actual code.
22
+
23
+ Try out the [demo](https://huggingface.co/spaces/HuggingFaceM4/screenshot2html)!
24
+
25
+
26
+ # Code snippet
27
+
28
+ The code snippet demonstrates how to perform batched generation to convert screenshots of websites into corresponding HTML + Tailwind code.
29
+
30
+ Note that the logic to process, and pad inputs will be encapsulated into a user-friendly processor upon the release of our vision and language model.
31
+
32
+ ```python
33
+ import torch
34
+ import requests
35
+
36
+ from datasets import load_dataset
37
+ from io import BytesIO
38
+ from transformers import AutoModelForCausalLM, AutoProcessor
39
+ from PIL import Image
40
+
41
+ from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
42
+ from transformers.image_transforms import resize, to_channel_dimension_format
43
+
44
+
45
+ DEVICE = torch.device("cuda")
46
+ PROCESSOR = AutoProcessor.from_pretrained(
47
+ "HuggingFaceM4/Sightseer",
48
+ token=API_TOKEN,
49
+ )
50
+ MODEL = AutoModelForCausalLM.from_pretrained(
51
+ "HuggingFaceM4/Sightseer",
52
+ token=API_TOKEN,
53
+ trust_remote_code=True,
54
+ torch_dtype=torch.bfloat16,
55
+ ).to(DEVICE)
56
+ image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
57
+ BOS_TOKEN = PROCESSOR.tokenizer.bos_token
58
+ BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
59
+
60
+
61
+ def convert_to_rgb(image):
62
+ if image.mode == "RGB":
63
+ return image
64
+
65
+ image_rgba = image.convert("RGBA")
66
+ background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
67
+ alpha_composite = Image.alpha_composite(background, image_rgba)
68
+ alpha_composite = alpha_composite.convert("RGB")
69
+ return alpha_composite
70
+
71
+
72
+ # The processor is the same as the Idefics processor except for the BILINEAR interpolation,
73
+ # so this is a hack in order to redefine ONLY the transform method
74
+ def custom_transform(x):
75
+ x = convert_to_rgb(x)
76
+ x = to_numpy_array(x)
77
+
78
+ height, width = x.shape[:2]
79
+ aspect_ratio = width / height
80
+ if width >= height and width > 980:
81
+ width = 980
82
+ height = int(width / aspect_ratio)
83
+ elif height > width and height > 980:
84
+ height = 980
85
+ width = int(height * aspect_ratio)
86
+ width = max(width, 378)
87
+ height = max(height, 378)
88
+
89
+ x = resize(x, (height, width), resample=PILImageResampling.BILINEAR)
90
+ x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
91
+ x = PROCESSOR.image_processor.normalize(
92
+ x,
93
+ mean=PROCESSOR.image_processor.image_mean,
94
+ std=PROCESSOR.image_processor.image_std
95
+ )
96
+ x = to_channel_dimension_format(x, ChannelDimension.FIRST)
97
+ x = torch.tensor(x)
98
+ return x
99
+
100
+
101
+ # Create text token inputs
102
+ image_seq = '<image>' * image_seq_len
103
+ inputs = PROCESSOR.tokenizer(
104
+ [
105
+ f"{BOS_TOKEN}<fake_token_around_image>{image_seq}<fake_token_around_image>In this image, we see",
106
+ f"{BOS_TOKEN}bla bla<fake_token_around_image>{image_seq}<fake_token_around_image>{image_seq}<fake_token_around_image>",
107
+ ],
108
+ return_tensors="pt",
109
+ add_special_tokens=False,
110
+ padding=True,
111
+ )
112
+
113
+
114
+ # Create pixel inputs
115
+ # We load images from WebSight, but any screenshot in the form of a PIL image will work
116
+ dataset = load_dataset("HuggingFaceM4/WebSight", streaming=True)
117
+ dataset = iter(dataset)
118
+ image1 = next(dataset)
119
+ image2 = next(dataset)
120
+ raw_images = [
121
+ [image1],
122
+ [image2],
123
+ ]
124
+ output_images = [
125
+ [PROCESSOR.image_processor(img, transform=custom_transform) for img in img_list]
126
+ for img_list in raw_images
127
+ ]
128
+ total_batch_size = len(output_images)
129
+ max_num_images = max([len(img_l) for img_l in output_images])
130
+ max_height = max([i.size(2) for img_l in output_images for i in img_l])
131
+ max_width = max([i.size(3) for img_l in output_images for i in img_l])
132
+ padded_image_tensor = torch.zeros(total_batch_size, max_num_images, 3, max_height, max_width)
133
+ padded_pixel_attention_masks = torch.zeros(
134
+ total_batch_size, max_num_images, max_height, max_width, dtype=torch.bool
135
+ )
136
+ for batch_idx, img_l in enumerate(output_images):
137
+ for img_idx, img in enumerate(img_l):
138
+ im_height, im_width = img.size()[2:]
139
+ padded_image_tensor[batch_idx, img_idx, :, :im_height, :im_width] = img
140
+ padded_pixel_attention_masks[batch_idx, img_idx, :im_height, :im_width] = True
141
+
142
+ inputs["pixel_values"] = padded_image_tensor
143
+ inputs["pixel_attention_mask"] = padded_pixel_attention_masks
144
+ inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
145
+
146
+ generated_ids = MODEL.generate(**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=10)
147
+ generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)
148
+
149
+ print(generated_texts)
150
+ ```
151
+
152
+
153
+ # Model Details
154
+
155
+ - **Developed by:** Hugging Face
156
+ - **Model type:** Multi-modal model (screenshot of website component to HTML/Tailwind CSS code)
157
+ - **Language(s) (NLP):** en
158
+ - **License:** see [License section](#license)
159
+ - **Parent Models:** [SigLIP](https://github.com/huggingface/transformers/pull/26522) and [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
160
+ - **Resources for more information:**
161
+ - WebSight dataset: [Dataset card](https://huggingface.co/datasets/HuggingFaceM4/Websight)
162
+
163
+ # License
164
+
165
+ The model is built on top of two pre-trained models: [SigLIP](https://github.com/huggingface/transformers/pull/26522) and [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1), which are delivered under an Apache-2.0 license. As such, users should comply with the licenses of these models.
166
+
167
+ The two pre-trained models are connected to each other with newly initialized parameters that we train. These are not based on any of the two base frozen models forming the composite model. We release the additional weights we trained under an Apache-2.0 license.
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<fake_token_around_image>": 32000,
3
+ "<image>": 32001
4
+ }
common.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ import torch
22
+ from torch import nn
23
+ from transformers.activations import ACT2FN
24
+
25
+ import torch.nn.functional as F
26
+
27
+ class MLP(nn.Module):
28
+ def __init__(self, activation, input_size, intermediate_size, output_size):
29
+ super().__init__()
30
+ self.input_size = input_size
31
+ self.intermediate_size = intermediate_size
32
+ self.output_size = output_size
33
+
34
+ self.gate_proj = nn.Linear(input_size, intermediate_size, bias=False)
35
+ self.up_proj = nn.Linear(input_size, intermediate_size, bias=False)
36
+ self.down_proj = nn.Linear(intermediate_size, output_size, bias=False)
37
+ self.act_fn = ACT2FN[activation]
38
+
39
+ def forward(self, x):
40
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
41
+
42
+
43
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm
44
+ class RMSNorm(nn.Module):
45
+ def __init__(self, hidden_size, eps=1e-6):
46
+ """
47
+ RMSNorm is equivalent to T5LayerNorm
48
+ """
49
+ super().__init__()
50
+ self.weight = nn.Parameter(torch.ones(hidden_size))
51
+ self.variance_epsilon = eps
52
+
53
+ def forward(self, hidden_states):
54
+ input_dtype = hidden_states.dtype
55
+ hidden_states = hidden_states.to(torch.float32)
56
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
57
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
58
+ return self.weight * hidden_states.to(input_dtype)
59
+
60
+
61
+ class DecoupledEmbedding(nn.Embedding):
62
+ # Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding
63
+ """
64
+ Implements a decoupling of parameters to allow freezing (or not) a subset of the embeddings.
65
+ In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `num_additional_embeddings` > 0, then it will create `num_additional_embeddings` additional parameters that are always trained.
66
+ If `num_additional_embeddings=0`, then the module defaults back to the regular behavior of `nn.Embedding`.
67
+ """
68
+
69
+ def __init__(
70
+ self,
71
+ num_embeddings,
72
+ num_additional_embeddings,
73
+ embedding_dim,
74
+ partially_freeze=False,
75
+ device=None,
76
+ dtype=None,
77
+ padding_idx=None,
78
+ **kwargs,
79
+ ) -> None:
80
+ """
81
+ num_additional_embeddings: int. Number of additional embeddings. Only useful when you `partially_freeze=True`.
82
+ partially_freeze: bool. If True, the regular `weight` will be frozen. `additional_weight` is never frozen.
83
+
84
+ Note: there are a lot of other parameters to initialize a standard `nn.Embedding` such as `padding_idx`, `max_norm` or `norm_type`. We are not supporting these.
85
+ """
86
+ if padding_idx is not None and padding_idx > num_embeddings:
87
+ raise ValueError(f"padding_idx must be within num_embeddings. Got {padding_idx} and {num_embeddings}")
88
+ super().__init__(
89
+ num_embeddings=num_embeddings,
90
+ embedding_dim=embedding_dim,
91
+ device=device,
92
+ dtype=dtype,
93
+ padding_idx=padding_idx,
94
+ **kwargs,
95
+ )
96
+ self.num_embeddings = num_embeddings
97
+ self.padding_idx = padding_idx
98
+ self.num_additional_embeddings = num_additional_embeddings
99
+ self.partially_freeze = partially_freeze
100
+
101
+ if partially_freeze:
102
+ self.weight.requires_grad_(False)
103
+
104
+ if self.num_additional_embeddings > 0:
105
+ self.additional_embedding = nn.Embedding(
106
+ num_embeddings=self.num_additional_embeddings,
107
+ embedding_dim=embedding_dim,
108
+ device=device,
109
+ dtype=dtype,
110
+ )
111
+
112
+ def forward(self, input_ids):
113
+ """
114
+ we have 2 embeddings, with different indices - one pretrained self.weight and another
115
+ self.additional_embedding.weight that is being trained.
116
+
117
+ in order to make a lookup of the input ids, we:
118
+ 1. find out the indices of the entries belonging to the 2nd embedding
119
+ 2. extract those values while subtracting the size of the first embedding (num_embeddings),
120
+ since the 2nd embedding starts from 0 and not num_embeddings
121
+ 3. perform the 2nd embedding lookup
122
+ 4. now we handle the 1st embedding, we overwrite indices belonging to the 2nd embedding with a padding index
123
+ 5. perform the 1st embedding lookup
124
+ 6. now we overwrite the values in the 1st embedding lookup with the values of the 2nd embedding lookup
125
+
126
+ note: for the 1st embedding lookup we could have looked up only the low indices and not do
127
+ the padding, but then we have to create a new tensor and populate it with 2 tensors that are
128
+ spread out across various indices - i.e. not a simple concat - I haven't benchmarked the
129
+ complex case if it's any faster, given that seqlens are usually relatively short it's
130
+ probably not faster or if faster not by much - but might be a good idea to measure.
131
+
132
+ """
133
+ if self.num_additional_embeddings == 0:
134
+ return self.additional_embedding(input_ids)
135
+
136
+ # Clone so that we don't modify the original input_ids later on
137
+ input_ids = input_ids.clone()
138
+ additional_vocab_indices = torch.where(input_ids >= self.num_embeddings)
139
+ input_ids_additional_vocab = input_ids[additional_vocab_indices]
140
+ additional_embeddings = self.additional_embedding(input_ids_additional_vocab - self.num_embeddings)
141
+
142
+ # for successful lookup replace input_ids with 0, the results of these will be discarded anyway
143
+ input_ids[additional_vocab_indices] = 0
144
+ full_vector = F.embedding(input_ids, self.weight)
145
+
146
+ # overwrite the records with high indices
147
+ full_vector[additional_vocab_indices] = additional_embeddings
148
+
149
+ return full_vector
150
+
151
+ def extra_repr(self) -> str:
152
+ return "num_embeddings={}, num_additional_embeddings={}, embedding_dim={}, partially_freeze={}".format(
153
+ self.num_embeddings,
154
+ self.num_additional_embeddings,
155
+ self.embedding_dim,
156
+ self.partially_freeze,
157
+ )
158
+
159
+ @classmethod
160
+ def from_pretrained(cls, embeddings, freeze=True, **kwargs):
161
+ raise NotImplementedError
162
+
163
+
164
+ class DecoupledLinear(nn.Linear):
165
+ # Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear
166
+ """
167
+ Implements a decoupling of parameters to allow freezing (or not) a subset of the parameters.
168
+ In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `out_additional_features` > 0, then it will create `out_additional_features * in_features` additional parameters that are always trained.
169
+ If `out_additional_features=0`, then the module defaults back to the regular behavior of `nn.Linear`.
170
+ """
171
+
172
+ def __init__(
173
+ self,
174
+ in_features: int,
175
+ out_features: int,
176
+ out_additional_features: int = 0,
177
+ bias: bool = True,
178
+ partially_freeze: bool = True,
179
+ device=None,
180
+ dtype=None,
181
+ ) -> None:
182
+ """
183
+ out_additional_features: int. Number of additional trainable dimensions. Only makes sense when `partially_freeze=True`.
184
+ partially_freeze: bool. If True, the regular `weight` will be frozen and extra parameters (if any) will be trainable. If False, default to the regular behavior of nn.Linear.
185
+ """
186
+ super().__init__(in_features, out_features, bias, device, dtype)
187
+ self.out_additional_features = out_additional_features
188
+ self.partially_freeze = partially_freeze
189
+
190
+ self.in_features = in_features
191
+ self.out_features = out_features
192
+
193
+ if partially_freeze:
194
+ self.weight.requires_grad_(False)
195
+ if bias:
196
+ self.bias.requires_grad_(False)
197
+
198
+ if out_additional_features > 0:
199
+ self.additional_fc = nn.Linear(
200
+ in_features=in_features,
201
+ out_features=out_additional_features,
202
+ bias=bias,
203
+ device=device,
204
+ dtype=dtype,
205
+ )
206
+
207
+ def forward(self, input: torch.Tensor) -> torch.Tensor:
208
+ output = F.linear(input, self.weight, self.bias)
209
+
210
+ if self.out_additional_features > 0:
211
+ additional_features = self.additional_fc(input)
212
+ output = torch.cat((output, additional_features), -1)
213
+
214
+ return output
215
+
216
+ def extra_repr(self) -> str:
217
+ """Overwriting `nn.Linear.extra_repr` to include new parameters."""
218
+ return "in_features={}, out_features={}, out_additional_features={}, bias={}, partially_freeze={}".format(
219
+ self.in_features,
220
+ self.out_features,
221
+ self.out_additional_features,
222
+ self.bias is not None,
223
+ self.partially_freeze,
224
+ )
config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "None",
4
+ "additional_vocab_size": 2,
5
+ "alpha_initializer": "zeros",
6
+ "alpha_type": "float",
7
+ "alphas_initializer_range": 0.0,
8
+ "architectures": [
9
+ "Idefics2ForVisionText2Text"
10
+ ],
11
+ "attention_dropout": 0.0,
12
+ "auto_map": {
13
+ "AutoConfig": "configuration_idefics2.Idefics2Config",
14
+ "AutoModelForCausalLM": "modeling_idefics2.Idefics2ForVisionText2Text"
15
+ },
16
+ "bos_token_id": 1,
17
+ "cross_layer_interval": 1,
18
+ "eos_token_id": 2,
19
+ "freeze_lm_head": false,
20
+ "freeze_text_layers": false,
21
+ "freeze_text_module_exceptions": [],
22
+ "freeze_vision_layers": false,
23
+ "freeze_vision_module_exceptions": [],
24
+ "hidden_act": "silu",
25
+ "hidden_size": 4096,
26
+ "image_token_id": 32001,
27
+ "initializer_range": 0.02,
28
+ "intermediate_size": 14336,
29
+ "max_position_embeddings": 32768,
30
+ "model_type": "idefics2",
31
+ "num_attention_heads": 32,
32
+ "num_hidden_layers": 32,
33
+ "num_key_value_heads": 8,
34
+ "pad_token_id": 0,
35
+ "perceiver_config": {
36
+ "num_key_value_heads": 4,
37
+ "resampler_depth": 3,
38
+ "resampler_head_dim": 96,
39
+ "resampler_n_heads": 16,
40
+ "resampler_n_latents": 64,
41
+ "qk_layer_norms_perceiver": true
42
+ },
43
+ "qk_layer_norms": true,
44
+ "rms_norm_eps": 1e-05,
45
+ "rope_theta": 10000.0,
46
+ "sliding_window": 4096,
47
+ "tie_word_embeddings": false,
48
+ "torch_dtype": "bfloat16",
49
+ "transformers_version": "4.34.0.dev0",
50
+ "use_cache": true,
51
+ "use_resampler": true,
52
+ "vision_config": {
53
+ "hidden_size": 1152,
54
+ "image_size": 980,
55
+ "intermediate_size": 4304,
56
+ "model_type": "idefics2",
57
+ "num_attention_heads": 16,
58
+ "num_hidden_layers": 27,
59
+ "patch_size": 14
60
+ },
61
+ "vocab_size": 32000
62
+ }
configuration_idefics2.py ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Idefics2 model configuration"""
16
+ from transformers.configuration_utils import PretrainedConfig
17
+ from transformers.utils import logging
18
+
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+ MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
23
+ "HuggingFaceM4/idefics2": "https://huggingface.co/HuggingFaceM4/idefics2/resolve/main/config.json",
24
+ }
25
+
26
+
27
+ class Idefics2VisionConfig(PretrainedConfig):
28
+ r"""
29
+ """
30
+ model_type = "idefics2"
31
+
32
+ def __init__(
33
+ self,
34
+ hidden_size=768,
35
+ intermediate_size=3072,
36
+ num_hidden_layers=12,
37
+ num_attention_heads=12,
38
+ num_channels=3,
39
+ image_size=224,
40
+ patch_size=32,
41
+ hidden_act="gelu_pytorch_tanh",
42
+ layer_norm_eps=1e-6,
43
+ attention_dropout=0.0,
44
+ initializer_range=0.02,
45
+ initializer_factor=1.0,
46
+ _flash_attn_2_enabled=True,
47
+ **kwargs,
48
+ ):
49
+ super().__init__(**kwargs)
50
+
51
+ self.hidden_size = hidden_size
52
+ self.intermediate_size = intermediate_size
53
+ self.num_hidden_layers = num_hidden_layers
54
+ self.num_attention_heads = num_attention_heads
55
+ self.num_channels = num_channels
56
+ self.patch_size = patch_size
57
+ self.image_size = image_size
58
+ self.initializer_range = initializer_range
59
+ self.initializer_factor = initializer_factor
60
+ self.attention_dropout = attention_dropout
61
+ self.layer_norm_eps = layer_norm_eps
62
+ self.hidden_act = hidden_act
63
+ self._flash_attn_2_enabled = _flash_attn_2_enabled
64
+
65
+
66
+ class Idefics2PerceiverConfig(PretrainedConfig):
67
+ r"""
68
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
69
+ documentation from [`PretrainedConfig`] for more information.
70
+
71
+ Args:
72
+ use_resampler (`bool`, *optional*, defaults to `False`):
73
+ Whether or not to use the resampler
74
+ resampler_n_latents (`int`, *optional*, defaults to ):
75
+ Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
76
+ resampler_depth (`int`, *optional*, defaults to 6):
77
+ Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
78
+ resampler_n_heads (`int`, *optional*, defaults to 16):
79
+ Number of heads in each Transformer block (for multi-headed self-attention).
80
+ resampler_head_dim (`int`, *optional*, defaults to 96):
81
+ Dimensionality of each head projection in the Transformer block.
82
+ qk_layer_norms_perceiver (`bool`, *optional*, defaults to `False`):
83
+ Whether or not to use qk layer norms in perceiver
84
+ """
85
+ model_type = "idefics2"
86
+
87
+ def __init__(
88
+ self,
89
+ hidden_act="silu",
90
+ resampler_n_latents=64,
91
+ resampler_depth=6,
92
+ resampler_n_heads=16,
93
+ num_key_value_heads=1,
94
+ resampler_head_dim=96,
95
+ qk_layer_norms_perceiver=False,
96
+ attention_dropout=0.0,
97
+ **kwargs,
98
+ ):
99
+ self.hidden_act = hidden_act
100
+ self.resampler_n_latents = resampler_n_latents
101
+ self.resampler_depth = resampler_depth
102
+ self.resampler_n_heads = resampler_n_heads
103
+ self.num_key_value_heads = num_key_value_heads
104
+ self.resampler_head_dim = resampler_head_dim
105
+ self.qk_layer_norms_perceiver = qk_layer_norms_perceiver
106
+ self.attention_dropout = attention_dropout
107
+ if self.num_key_value_heads > self.resampler_n_heads:
108
+ raise ValueError(
109
+ f"num_key_value_heads={self.num_key_value_heads} must be less than or equal to"
110
+ f" resampler_n_heads={self.resampler_n_heads}"
111
+ )
112
+
113
+ super().__init__(**kwargs)
114
+
115
+
116
+ class Idefics2Config(PretrainedConfig):
117
+ r"""
118
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
119
+ documentation from [`PretrainedConfig`] for more information.
120
+
121
+ Args:
122
+ additional_vocab_size (`int`, *optional`, defaults to 0):
123
+ Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens
124
+ are always trainable whereas regular vocab tokens can be frozen or not.
125
+ vocab_size (`int`, *optional*, defaults to 32000):
126
+ Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
127
+ `inputs_ids` passed when calling [`MistralModel`]
128
+ hidden_size (`int`, *optional*, defaults to 4096):
129
+ Dimension of the hidden representations.
130
+ intermediate_size (`int`, *optional*, defaults to 14336):
131
+ Dimension of the MLP representations.
132
+ num_hidden_layers (`int`, *optional*, defaults to 32):
133
+ Number of hidden layers in the Transformer encoder.
134
+ num_attention_heads (`int`, *optional*, defaults to 32):
135
+ Number of attention heads for each attention layer in the Transformer encoder.
136
+ num_key_value_heads (`int`, *optional*, defaults to 8):
137
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
138
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
139
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
140
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
141
+ by meanpooling all the original heads within that group. For more details checkout [this
142
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
143
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
144
+ The non-linear activation function (function or string) in the decoder.
145
+ max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
146
+ The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
147
+ allows sequence of up to 4096*32 tokens.
148
+ initializer_range (`float`, *optional*, defaults to 0.02):
149
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
150
+ alpha_initializer (`str`, *optional*, defaults to `"zeros"`):
151
+ Initialization type for the alphas.
152
+ alphas_initializer_range (`float`, *optional*, defaults to 0.0):
153
+ The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross
154
+ Attention.
155
+ alpha_type (`str`, *optional*, defaults to `"float"`):
156
+ Whether the gating alphas should be vectors or single floats.
157
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
158
+ The epsilon used by the rms normalization layers.
159
+ use_cache (`bool`, *optional*, defaults to `True`):
160
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
161
+ relevant if `config.is_decoder=True`.
162
+ pad_token_id (`int`, *optional*):
163
+ The id of the padding token.
164
+ bos_token_id (`int`, *optional*, defaults to 1):
165
+ The id of the "beginning-of-sequence" token.
166
+ eos_token_id (`int`, *optional*, defaults to 2):
167
+ The id of the "end-of-sequence" token.
168
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
169
+ Whether the model's input and output word embeddings should be tied.
170
+ rope_theta (`float`, *optional*, defaults to 10000.0):
171
+ The base period of the RoPE embeddings.
172
+ sliding_window (`int`, *optional*, defaults to 4096):
173
+ Sliding window attention window size. If not specified, will default to `4096`.
174
+ cross_layer_interval (`int`, *optional*, default to 1)
175
+ Interval for cross attention (from text to image) layers.
176
+ qk_layer_norms (`bool`, *optional*, defaults to `False`): Whether to add layer norm after q and k
177
+ freeze_text_layers (`bool`, *optional*, defaults to `True`): Whether to freeze text layers
178
+ freeze_text_module_exceptions (`bool`, *optional*, defaults to `[]`):
179
+ Exceptions to freezing text layers when `freeze_text_layers` is `True`
180
+ freeze_lm_head (`bool`, *optional*, defaults to `False`): Whether to freeze lm head
181
+ freeze_vision_layers (`bool`, *optional*, defaults to `True`): Whether to freeze vision layers
182
+ freeze_vision_module_exceptions (`bool`, *optional*, defaults to `[]`):
183
+ Exceptions to freezing vision layers when `freeze_vision_layers` is `True`
184
+ use_resampler (`bool`, *optional*, defaults to `False`): Whether to use the Resampler
185
+ vision_config (`IdeficsVisionConfig`, *optional*): Custom vision config or dict
186
+ perceiver_config (`IdeficsPerceiverConfig`, *optional*): Custom perceiver config or dict
187
+
188
+ Example:
189
+ ```python
190
+ >>> from transformers import MistralModel, MistralConfig
191
+
192
+ >>> # Initializing a Mistral 7B style configuration
193
+ >>> configuration = MistralConfig()
194
+
195
+ >>> # Initializing a model from the Mistral 7B style configuration
196
+ >>> model = MistralModel(configuration)
197
+
198
+ >>> # Accessing the model configuration
199
+ >>> configuration = model.config
200
+ ```"""
201
+ model_type = "idefics2"
202
+ is_composition = False
203
+
204
+ def __init__(
205
+ self,
206
+ additional_vocab_size=0,
207
+ vocab_size=32000,
208
+ hidden_size=4096,
209
+ intermediate_size=14336,
210
+ num_hidden_layers=32,
211
+ num_attention_heads=32,
212
+ num_key_value_heads=8,
213
+ hidden_act="silu",
214
+ max_position_embeddings=4096 * 32,
215
+ initializer_range=0.02,
216
+ alpha_initializer="zeros",
217
+ alphas_initializer_range=0.0,
218
+ alpha_type="float",
219
+ rms_norm_eps=1e-6,
220
+ use_cache=True,
221
+ pad_token_id=0, # None in the original configuration_mistral, we set it to the unk_token_id
222
+ bos_token_id=1,
223
+ eos_token_id=2,
224
+ image_token_id=32_001,
225
+ tie_word_embeddings=False,
226
+ rope_theta=10000.0,
227
+ sliding_window=4096,
228
+ cross_layer_interval=1,
229
+ qk_layer_norms=False,
230
+ freeze_text_layers=True,
231
+ freeze_text_module_exceptions=[],
232
+ freeze_lm_head=False,
233
+ freeze_vision_layers=True,
234
+ freeze_vision_module_exceptions=[],
235
+ attention_dropout=0.0,
236
+ _flash_attn_2_enabled=True,
237
+ use_resampler=True,
238
+ vision_config=None,
239
+ perceiver_config=None,
240
+ **kwargs,
241
+ ):
242
+ self.vocab_size = vocab_size
243
+ self.additional_vocab_size = additional_vocab_size
244
+ self.image_token_id = image_token_id
245
+ self.max_position_embeddings = max_position_embeddings
246
+ self.hidden_size = hidden_size
247
+ self.intermediate_size = intermediate_size
248
+ self.num_hidden_layers = num_hidden_layers
249
+ self.num_attention_heads = num_attention_heads
250
+ self.sliding_window = sliding_window
251
+
252
+ # for backward compatibility
253
+ if num_key_value_heads is None:
254
+ num_key_value_heads = num_attention_heads
255
+
256
+ self.num_key_value_heads = num_key_value_heads
257
+ self.hidden_act = hidden_act
258
+ self.initializer_range = initializer_range
259
+ self.alpha_initializer = alpha_initializer
260
+ self.alphas_initializer_range = alphas_initializer_range
261
+ self.alpha_type = alpha_type
262
+ self.rms_norm_eps = rms_norm_eps
263
+ self.use_cache = use_cache
264
+ self.rope_theta = rope_theta
265
+
266
+ self.cross_layer_interval = cross_layer_interval
267
+ self.qk_layer_norms = qk_layer_norms
268
+ self.freeze_vision_layers = freeze_vision_layers
269
+
270
+ self.freeze_text_layers = freeze_text_layers
271
+ self.freeze_text_module_exceptions = freeze_text_module_exceptions
272
+ self.freeze_vision_module_exceptions = freeze_vision_module_exceptions
273
+ self.freeze_lm_head = freeze_lm_head
274
+
275
+ self.use_resampler = use_resampler
276
+ self._flash_attn_2_enabled = _flash_attn_2_enabled
277
+ self.attention_dropout = attention_dropout
278
+
279
+ if perceiver_config is None:
280
+ self.perceiver_config = Idefics2PerceiverConfig()
281
+ elif isinstance(perceiver_config, dict):
282
+ self.perceiver_config = Idefics2PerceiverConfig(**perceiver_config)
283
+ elif isinstance(perceiver_config, Idefics2PerceiverConfig):
284
+ self.perceiver_config = perceiver_config
285
+
286
+ if vision_config is None:
287
+ self.vision_config = Idefics2VisionConfig()
288
+ elif isinstance(vision_config, dict):
289
+ self.vision_config = Idefics2VisionConfig(**vision_config)
290
+ elif isinstance(vision_config, Idefics2VisionConfig):
291
+ self.vision_config = vision_config
292
+
293
+ super().__init__(
294
+ pad_token_id=pad_token_id,
295
+ bos_token_id=bos_token_id,
296
+ eos_token_id=eos_token_id,
297
+ tie_word_embeddings=tie_word_embeddings,
298
+ **kwargs,
299
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.37.1"
7
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84da111d10913688eb45e88b253de9dc053f1b079ca3865b18680f5db895579d
3
+ size 4966708008
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5099ad602f89eacb8b7ad6131be7d8bb4cc98da2ffc2463a41c31edc96fa278
3
+ size 4915916128
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b1f5417310f95ca8d532ab312ea44ceb2c1786a1c4e25399b23a93a634c6f8a
3
+ size 4999819336
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2134c01ddb025692cd0966aa006e728c09fc9a4fd4bcf231c873c16af37ee9c5
3
+ size 1923190712
model.safetensors.index.json ADDED
@@ -0,0 +1,776 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {},
3
+ "weight_map": {
4
+ "lm_head.additional_fc.weight": "model-00004-of-00004.safetensors",
5
+ "lm_head.weight": "model-00004-of-00004.safetensors",
6
+ "model.embed_tokens.additional_embedding.weight": "model-00001-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00004.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00004.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00004.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
296
+ "model.modality_projection.down_proj.weight": "model-00001-of-00004.safetensors",
297
+ "model.modality_projection.gate_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.modality_projection.up_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.norm.weight": "model-00004-of-00004.safetensors",
300
+ "model.perceiver_resampler.latents": "model-00001-of-00004.safetensors",
301
+ "model.perceiver_resampler.layers.0.input_context_norm.weight": "model-00001-of-00004.safetensors",
302
+ "model.perceiver_resampler.layers.0.input_latents_norm.weight": "model-00001-of-00004.safetensors",
303
+ "model.perceiver_resampler.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.perceiver_resampler.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
305
+ "model.perceiver_resampler.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.perceiver_resampler.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
307
+ "model.perceiver_resampler.layers.0.self_attn.k_layer_norm.weight": "model-00001-of-00004.safetensors",
308
+ "model.perceiver_resampler.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
309
+ "model.perceiver_resampler.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.perceiver_resampler.layers.0.self_attn.q_layer_norm.weight": "model-00001-of-00004.safetensors",
311
+ "model.perceiver_resampler.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.perceiver_resampler.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
313
+ "model.perceiver_resampler.layers.1.input_context_norm.weight": "model-00001-of-00004.safetensors",
314
+ "model.perceiver_resampler.layers.1.input_latents_norm.weight": "model-00001-of-00004.safetensors",
315
+ "model.perceiver_resampler.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.perceiver_resampler.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
317
+ "model.perceiver_resampler.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.perceiver_resampler.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
319
+ "model.perceiver_resampler.layers.1.self_attn.k_layer_norm.weight": "model-00001-of-00004.safetensors",
320
+ "model.perceiver_resampler.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
321
+ "model.perceiver_resampler.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
322
+ "model.perceiver_resampler.layers.1.self_attn.q_layer_norm.weight": "model-00001-of-00004.safetensors",
323
+ "model.perceiver_resampler.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
324
+ "model.perceiver_resampler.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
325
+ "model.perceiver_resampler.layers.2.input_context_norm.weight": "model-00001-of-00004.safetensors",
326
+ "model.perceiver_resampler.layers.2.input_latents_norm.weight": "model-00001-of-00004.safetensors",
327
+ "model.perceiver_resampler.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.perceiver_resampler.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
329
+ "model.perceiver_resampler.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.perceiver_resampler.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
331
+ "model.perceiver_resampler.layers.2.self_attn.k_layer_norm.weight": "model-00001-of-00004.safetensors",
332
+ "model.perceiver_resampler.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
333
+ "model.perceiver_resampler.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
334
+ "model.perceiver_resampler.layers.2.self_attn.q_layer_norm.weight": "model-00001-of-00004.safetensors",
335
+ "model.perceiver_resampler.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
336
+ "model.perceiver_resampler.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
337
+ "model.perceiver_resampler.norm.weight": "model-00001-of-00004.safetensors",
338
+ "model.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00004.safetensors",
339
+ "model.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00004.safetensors",
340
+ "model.vision_model.embeddings.position_embedding.weight": "model-00001-of-00004.safetensors",
341
+ "model.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00004.safetensors",
342
+ "model.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00004.safetensors",
343
+ "model.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00004.safetensors",
344
+ "model.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00004.safetensors",
345
+ "model.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
346
+ "model.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
347
+ "model.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
348
+ "model.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
349
+ "model.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
350
+ "model.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
351
+ "model.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
352
+ "model.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
353
+ "model.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
354
+ "model.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
355
+ "model.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
356
+ "model.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
357
+ "model.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00004.safetensors",
358
+ "model.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00004.safetensors",
359
+ "model.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00004.safetensors",
360
+ "model.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00004.safetensors",
361
+ "model.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
362
+ "model.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
363
+ "model.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
364
+ "model.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
365
+ "model.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
366
+ "model.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
367
+ "model.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
368
+ "model.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
369
+ "model.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
370
+ "model.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
371
+ "model.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
372
+ "model.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
373
+ "model.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00004.safetensors",
374
+ "model.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00004.safetensors",
375
+ "model.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00004.safetensors",
376
+ "model.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00004.safetensors",
377
+ "model.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
378
+ "model.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
379
+ "model.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
380
+ "model.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
381
+ "model.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
382
+ "model.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
383
+ "model.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
384
+ "model.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
385
+ "model.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
386
+ "model.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
387
+ "model.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
388
+ "model.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
389
+ "model.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00004.safetensors",
390
+ "model.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00004.safetensors",
391
+ "model.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00004.safetensors",
392
+ "model.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00004.safetensors",
393
+ "model.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
394
+ "model.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
395
+ "model.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
396
+ "model.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
397
+ "model.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
398
+ "model.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
399
+ "model.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
400
+ "model.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
401
+ "model.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
402
+ "model.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
403
+ "model.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
404
+ "model.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
405
+ "model.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00004.safetensors",
406
+ "model.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00004.safetensors",
407
+ "model.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00004.safetensors",
408
+ "model.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00004.safetensors",
409
+ "model.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
410
+ "model.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
411
+ "model.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
412
+ "model.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
413
+ "model.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
414
+ "model.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
415
+ "model.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
416
+ "model.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
417
+ "model.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
418
+ "model.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
419
+ "model.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
420
+ "model.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
421
+ "model.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00004.safetensors",
422
+ "model.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00004.safetensors",
423
+ "model.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00004.safetensors",
424
+ "model.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00004.safetensors",
425
+ "model.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
426
+ "model.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
427
+ "model.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
428
+ "model.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
429
+ "model.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
430
+ "model.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
431
+ "model.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
432
+ "model.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
433
+ "model.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
434
+ "model.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
435
+ "model.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
436
+ "model.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
437
+ "model.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00004.safetensors",
438
+ "model.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00004.safetensors",
439
+ "model.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00004.safetensors",
440
+ "model.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00004.safetensors",
441
+ "model.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
442
+ "model.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
443
+ "model.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
444
+ "model.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
445
+ "model.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
446
+ "model.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
447
+ "model.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
448
+ "model.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
449
+ "model.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
450
+ "model.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
451
+ "model.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
452
+ "model.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
453
+ "model.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00004.safetensors",
454
+ "model.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00004.safetensors",
455
+ "model.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00004.safetensors",
456
+ "model.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00004.safetensors",
457
+ "model.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
458
+ "model.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
459
+ "model.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
460
+ "model.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
461
+ "model.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
462
+ "model.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
463
+ "model.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
464
+ "model.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
465
+ "model.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
466
+ "model.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
467
+ "model.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
468
+ "model.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
469
+ "model.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00004.safetensors",
470
+ "model.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00004.safetensors",
471
+ "model.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00004.safetensors",
472
+ "model.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00004.safetensors",
473
+ "model.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
474
+ "model.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
475
+ "model.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
476
+ "model.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
477
+ "model.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
478
+ "model.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
479
+ "model.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
480
+ "model.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
481
+ "model.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
482
+ "model.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
483
+ "model.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
484
+ "model.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
485
+ "model.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00004.safetensors",
486
+ "model.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00004.safetensors",
487
+ "model.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00004.safetensors",
488
+ "model.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00004.safetensors",
489
+ "model.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
490
+ "model.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
491
+ "model.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
492
+ "model.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
493
+ "model.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
494
+ "model.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
495
+ "model.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
496
+ "model.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
497
+ "model.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
498
+ "model.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
499
+ "model.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
500
+ "model.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
501
+ "model.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00004.safetensors",
502
+ "model.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00004.safetensors",
503
+ "model.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00004.safetensors",
504
+ "model.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00004.safetensors",
505
+ "model.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
506
+ "model.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
507
+ "model.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
508
+ "model.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
509
+ "model.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
510
+ "model.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
511
+ "model.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
512
+ "model.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
513
+ "model.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
514
+ "model.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
515
+ "model.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
516
+ "model.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
517
+ "model.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00004.safetensors",
518
+ "model.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00004.safetensors",
519
+ "model.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00004.safetensors",
520
+ "model.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00004.safetensors",
521
+ "model.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
522
+ "model.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
523
+ "model.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
524
+ "model.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
525
+ "model.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
526
+ "model.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
527
+ "model.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
528
+ "model.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
529
+ "model.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
530
+ "model.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
531
+ "model.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
532
+ "model.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
533
+ "model.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00004.safetensors",
534
+ "model.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00004.safetensors",
535
+ "model.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00004.safetensors",
536
+ "model.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00004.safetensors",
537
+ "model.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
538
+ "model.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
539
+ "model.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
540
+ "model.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
541
+ "model.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
542
+ "model.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
543
+ "model.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
544
+ "model.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
545
+ "model.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
546
+ "model.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
547
+ "model.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
548
+ "model.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
549
+ "model.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00004.safetensors",
550
+ "model.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00004.safetensors",
551
+ "model.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00004.safetensors",
552
+ "model.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00004.safetensors",
553
+ "model.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
554
+ "model.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
555
+ "model.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
556
+ "model.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
557
+ "model.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
558
+ "model.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
559
+ "model.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
560
+ "model.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
561
+ "model.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
562
+ "model.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
563
+ "model.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
564
+ "model.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
565
+ "model.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00004.safetensors",
566
+ "model.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00004.safetensors",
567
+ "model.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00004.safetensors",
568
+ "model.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00004.safetensors",
569
+ "model.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
570
+ "model.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
571
+ "model.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
572
+ "model.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
573
+ "model.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
574
+ "model.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
575
+ "model.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
576
+ "model.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
577
+ "model.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
578
+ "model.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
579
+ "model.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
580
+ "model.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
581
+ "model.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00004.safetensors",
582
+ "model.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00004.safetensors",
583
+ "model.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00004.safetensors",
584
+ "model.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00004.safetensors",
585
+ "model.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
586
+ "model.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
587
+ "model.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
588
+ "model.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
589
+ "model.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
590
+ "model.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
591
+ "model.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
592
+ "model.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
593
+ "model.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
594
+ "model.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
595
+ "model.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
596
+ "model.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
597
+ "model.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00004.safetensors",
598
+ "model.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00004.safetensors",
599
+ "model.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00004.safetensors",
600
+ "model.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00004.safetensors",
601
+ "model.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
602
+ "model.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
603
+ "model.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
604
+ "model.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
605
+ "model.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
606
+ "model.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
607
+ "model.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
608
+ "model.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
609
+ "model.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
610
+ "model.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
611
+ "model.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
612
+ "model.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
613
+ "model.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00004.safetensors",
614
+ "model.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00004.safetensors",
615
+ "model.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00004.safetensors",
616
+ "model.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00004.safetensors",
617
+ "model.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
618
+ "model.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
619
+ "model.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
620
+ "model.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
621
+ "model.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
622
+ "model.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
623
+ "model.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
624
+ "model.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
625
+ "model.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
626
+ "model.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
627
+ "model.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
628
+ "model.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
629
+ "model.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00004.safetensors",
630
+ "model.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00004.safetensors",
631
+ "model.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00004.safetensors",
632
+ "model.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00004.safetensors",
633
+ "model.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
634
+ "model.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
635
+ "model.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
636
+ "model.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
637
+ "model.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
638
+ "model.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
639
+ "model.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
640
+ "model.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
641
+ "model.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
642
+ "model.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
643
+ "model.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
644
+ "model.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
645
+ "model.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00004.safetensors",
646
+ "model.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00004.safetensors",
647
+ "model.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00004.safetensors",
648
+ "model.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00004.safetensors",
649
+ "model.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
650
+ "model.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
651
+ "model.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
652
+ "model.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
653
+ "model.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
654
+ "model.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
655
+ "model.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
656
+ "model.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
657
+ "model.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
658
+ "model.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
659
+ "model.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
660
+ "model.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
661
+ "model.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00004.safetensors",
662
+ "model.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00004.safetensors",
663
+ "model.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00004.safetensors",
664
+ "model.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00004.safetensors",
665
+ "model.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
666
+ "model.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
667
+ "model.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
668
+ "model.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
669
+ "model.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
670
+ "model.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
671
+ "model.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
672
+ "model.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
673
+ "model.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
674
+ "model.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
675
+ "model.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
676
+ "model.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
677
+ "model.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00004.safetensors",
678
+ "model.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00004.safetensors",
679
+ "model.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00004.safetensors",
680
+ "model.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00004.safetensors",
681
+ "model.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
682
+ "model.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
683
+ "model.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
684
+ "model.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
685
+ "model.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
686
+ "model.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
687
+ "model.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
688
+ "model.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
689
+ "model.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
690
+ "model.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
691
+ "model.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
692
+ "model.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
693
+ "model.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00004.safetensors",
694
+ "model.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00004.safetensors",
695
+ "model.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00004.safetensors",
696
+ "model.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00004.safetensors",
697
+ "model.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
698
+ "model.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
699
+ "model.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
700
+ "model.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
701
+ "model.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
702
+ "model.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
703
+ "model.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
704
+ "model.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
705
+ "model.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
706
+ "model.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
707
+ "model.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
708
+ "model.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
709
+ "model.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00004.safetensors",
710
+ "model.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00004.safetensors",
711
+ "model.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00004.safetensors",
712
+ "model.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00004.safetensors",
713
+ "model.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
714
+ "model.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
715
+ "model.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
716
+ "model.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
717
+ "model.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
718
+ "model.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
719
+ "model.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
720
+ "model.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
721
+ "model.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
722
+ "model.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
723
+ "model.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
724
+ "model.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
725
+ "model.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00004.safetensors",
726
+ "model.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00004.safetensors",
727
+ "model.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00004.safetensors",
728
+ "model.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00004.safetensors",
729
+ "model.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
730
+ "model.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
731
+ "model.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
732
+ "model.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
733
+ "model.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
734
+ "model.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
735
+ "model.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
736
+ "model.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
737
+ "model.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
738
+ "model.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
739
+ "model.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
740
+ "model.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
741
+ "model.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00004.safetensors",
742
+ "model.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00004.safetensors",
743
+ "model.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00004.safetensors",
744
+ "model.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00004.safetensors",
745
+ "model.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
746
+ "model.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
747
+ "model.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
748
+ "model.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
749
+ "model.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
750
+ "model.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
751
+ "model.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
752
+ "model.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
753
+ "model.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
754
+ "model.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
755
+ "model.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
756
+ "model.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
757
+ "model.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00004.safetensors",
758
+ "model.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00004.safetensors",
759
+ "model.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00004.safetensors",
760
+ "model.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00004.safetensors",
761
+ "model.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
762
+ "model.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
763
+ "model.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
764
+ "model.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
765
+ "model.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
766
+ "model.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
767
+ "model.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
768
+ "model.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
769
+ "model.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
770
+ "model.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
771
+ "model.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
772
+ "model.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
773
+ "model.vision_model.post_layernorm.bias": "model-00001-of-00004.safetensors",
774
+ "model.vision_model.post_layernorm.weight": "model-00001-of-00004.safetensors"
775
+ }
776
+ }
modeling_idefics2.py ADDED
@@ -0,0 +1,1542 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch Idefics2 model."""
21
+ from dataclasses import dataclass
22
+ import inspect
23
+ import math
24
+ import warnings
25
+ from typing import List, Optional, Tuple, Union
26
+
27
+ import torch
28
+ import torch.nn.functional as F
29
+ import torch.utils.checkpoint
30
+ from torch import nn
31
+ from torch.nn import CrossEntropyLoss
32
+ from transformers.activations import ACT2FN
33
+ from transformers.cache_utils import Cache, DynamicCache
34
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
35
+ from transformers.utils import (
36
+ add_start_docstrings,
37
+ add_start_docstrings_to_model_forward,
38
+ is_flash_attn_2_available,
39
+ is_flash_attn_greater_or_equal_2_10,
40
+ replace_return_docstrings,
41
+ )
42
+
43
+ from einops import rearrange, repeat
44
+ from transformers import PreTrainedModel
45
+ from transformers.utils import logging
46
+ from transformers.modeling_outputs import ModelOutput
47
+
48
+ from .configuration_idefics2 import Idefics2Config
49
+ from .vision import SiglipVisionTransformer
50
+ from .common import DecoupledEmbedding, DecoupledLinear, MLP, RMSNorm
51
+ from .perceiver import PerceiverResampler
52
+
53
+
54
+ if is_flash_attn_2_available():
55
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
56
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
57
+
58
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
59
+
60
+ logger = logging.get_logger(__name__)
61
+
62
+ _CONFIG_FOR_DOC = "Idefics2Config"
63
+
64
+ Idefics2_PRETRAINED_MODEL_ARCHIVE_LIST = [
65
+ "HuggingFaceM4/idefics2"
66
+ ]
67
+
68
+ @dataclass
69
+ class Idefics2BaseModelOutputWithPast(ModelOutput):
70
+ """
71
+ Base class for Idefics2 model's outputs that may also contain a past key/values (to speed up sequential decoding).
72
+ Args:
73
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
74
+ Sequence of hidden-states at the output of the last layer of the model.
75
+ If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
76
+ hidden_size)` is output.
77
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
78
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
79
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
80
+ `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
81
+ encoder_sequence_length, embed_size_per_head)`.
82
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
83
+ `config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
84
+ input) to speed up sequential decoding.
85
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
86
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
87
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
88
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
89
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
90
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
91
+ sequence_length)`.
92
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
93
+ heads.
94
+ image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
95
+ Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
96
+ sequence_length, hidden_size)`.
97
+ image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
98
+ """
99
+
100
+ last_hidden_state: torch.FloatTensor = None
101
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
102
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
103
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
104
+ image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
105
+
106
+
107
+ @dataclass
108
+ class Idefics2CausalLMOutputWithPast(ModelOutput):
109
+ """
110
+ Base class for Idefics2 causal language model (or autoregressive) outputs.
111
+ Args:
112
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
113
+ Language modeling loss (for next-token prediction).
114
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
115
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
116
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
117
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
118
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`)
119
+ Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
120
+ `past_key_values` input) to speed up sequential decoding.
121
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
122
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
123
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
124
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
125
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
126
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
127
+ sequence_length)`.
128
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
129
+ heads.
130
+ image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
131
+ Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
132
+ sequence_length, hidden_size)`.
133
+ image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
134
+ """
135
+
136
+ loss: Optional[torch.FloatTensor] = None
137
+ logits: torch.FloatTensor = None
138
+ past_key_values: Optional[List[torch.FloatTensor]] = None
139
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
140
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
141
+ image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
142
+
143
+
144
+ def expand_inputs_for_generation(
145
+ input_ids,
146
+ expand_size=1,
147
+ is_encoder_decoder=False,
148
+ attention_mask=None,
149
+ encoder_outputs=None,
150
+ **model_kwargs,
151
+ ):
152
+ expanded_return_idx = (
153
+ torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1, expand_size).view(-1).to(input_ids.device)
154
+ )
155
+ input_ids = input_ids.index_select(0, expanded_return_idx)
156
+ model_kwargs["pixel_values"] = model_kwargs.get("pixel_values", None)
157
+ model_kwargs["image_hidden_states"] = model_kwargs.get("image_hidden_states", None)
158
+
159
+ if "token_type_ids" in model_kwargs:
160
+ token_type_ids = model_kwargs["token_type_ids"]
161
+ model_kwargs["token_type_ids"] = token_type_ids.index_select(0, expanded_return_idx)
162
+
163
+ if attention_mask is not None:
164
+ model_kwargs["attention_mask"] = attention_mask.index_select(0, expanded_return_idx)
165
+
166
+ if model_kwargs["pixel_values"] is not None:
167
+ model_kwargs["pixel_values"] = model_kwargs["pixel_values"].index_select(0, expanded_return_idx)
168
+
169
+ elif model_kwargs["image_hidden_states"] is not None:
170
+ model_kwargs["image_hidden_states"] = model_kwargs["image_hidden_states"].index_select(0, expanded_return_idx)
171
+
172
+ return input_ids, model_kwargs
173
+
174
+
175
+ def update_model_kwargs_for_generation(outputs, model_kwargs):
176
+ # must have this key set to at least None
177
+ if "past_key_values" in outputs:
178
+ model_kwargs["past_key_values"] = outputs.past_key_values
179
+ else:
180
+ model_kwargs["past_key_values"] = None
181
+
182
+ # update token_type_ids with last value
183
+ if "token_type_ids" in model_kwargs:
184
+ token_type_ids = model_kwargs["token_type_ids"]
185
+ model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
186
+
187
+ # update attention masks
188
+ if "attention_mask" in model_kwargs:
189
+ attention_mask = model_kwargs["attention_mask"]
190
+ model_kwargs["attention_mask"] = torch.cat(
191
+ [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
192
+ )
193
+
194
+ # Get the precomputed image_hidden_states
195
+ model_kwargs["image_hidden_states"] = outputs.image_hidden_states
196
+
197
+ return model_kwargs
198
+
199
+
200
+ def freeze_model(model, module_exceptions=[]):
201
+ mapping = {
202
+ "LayerNorm": nn.LayerNorm,
203
+ "Linear": nn.Linear,
204
+ "Embedding": nn.Embedding,
205
+ }
206
+ module_exceptions_mapped = [mapping[m] for m in module_exceptions]
207
+ for module in model.modules():
208
+ if module_exceptions and any([isinstance(module, t) for t in module_exceptions_mapped]):
209
+ module.requires_grad_(True) # Explicitly setting it to true to avoid any mistakes
210
+ else:
211
+ module.requires_grad_(False)
212
+ return model
213
+
214
+
215
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
216
+ def _get_unpad_data(attention_mask):
217
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
218
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
219
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
220
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
221
+ return (
222
+ indices,
223
+ cu_seqlens,
224
+ max_seqlen_in_batch,
225
+ )
226
+
227
+
228
+ # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral
229
+ class MistralRotaryEmbedding(nn.Module):
230
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
231
+ super().__init__()
232
+
233
+ self.dim = dim
234
+ self.max_position_embeddings = max_position_embeddings
235
+ self.base = base
236
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
237
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
238
+
239
+ # Build here to make `torch.jit.trace` work.
240
+ self._set_cos_sin_cache(
241
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
242
+ )
243
+
244
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
245
+ self.max_seq_len_cached = seq_len
246
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
247
+
248
+ freqs = torch.outer(t, self.inv_freq)
249
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
250
+ emb = torch.cat((freqs, freqs), dim=-1)
251
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
252
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
253
+
254
+ def forward(self, x, seq_len=None):
255
+ # x: [bs, num_attention_heads, seq_len, head_size]
256
+ if seq_len > self.max_seq_len_cached:
257
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
258
+
259
+ return (
260
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
261
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
262
+ )
263
+
264
+
265
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
266
+ def rotate_half(x):
267
+ """Rotates half the hidden dims of the input."""
268
+ x1 = x[..., : x.shape[-1] // 2]
269
+ x2 = x[..., x.shape[-1] // 2 :]
270
+ return torch.cat((-x2, x1), dim=-1)
271
+
272
+
273
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
274
+ # TODO @Arthur no longer copied from LLama after static cache
275
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
276
+ """Applies Rotary Position Embedding to the query and key tensors.
277
+ Args:
278
+ q (`torch.Tensor`): The query tensor.
279
+ k (`torch.Tensor`): The key tensor.
280
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
281
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
282
+ position_ids (`torch.Tensor`):
283
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
284
+ used to pass offsetted position ids when working with a KV-cache.
285
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
286
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
287
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
288
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
289
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
290
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
291
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
292
+ Returns:
293
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
294
+ """
295
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
296
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
297
+ q_embed = (q * cos) + (rotate_half(q) * sin)
298
+ k_embed = (k * cos) + (rotate_half(k) * sin)
299
+ return q_embed, k_embed
300
+
301
+
302
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
303
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
304
+ """
305
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
306
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
307
+ """
308
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
309
+ if n_rep == 1:
310
+ return hidden_states
311
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
312
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
313
+
314
+
315
+ class MistralAttention(nn.Module):
316
+ """
317
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
318
+ and "Generating Long Sequences with Sparse Transformers".
319
+ """
320
+
321
+ def __init__(self, config: Idefics2Config, layer_idx: Optional[int] = None, qk_layer_norms: bool = False):
322
+ super().__init__()
323
+ self.config = config
324
+ self.layer_idx = layer_idx
325
+ if layer_idx is None:
326
+ logger.warning_once(
327
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
328
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
329
+ "when creating this class."
330
+ )
331
+
332
+ self.hidden_size = config.hidden_size
333
+ self.num_heads = config.num_attention_heads
334
+ self.head_dim = self.hidden_size // self.num_heads
335
+ self.num_key_value_heads = config.num_key_value_heads
336
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
337
+ self.max_position_embeddings = config.max_position_embeddings
338
+ self.rope_theta = config.rope_theta
339
+ self.is_causal = True
340
+ self.attention_dropout = config.attention_dropout
341
+
342
+ if (self.head_dim * self.num_heads) != self.hidden_size:
343
+ raise ValueError(
344
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
345
+ f" and `num_heads`: {self.num_heads})."
346
+ )
347
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
348
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
349
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
350
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
351
+
352
+ self.qk_layer_norms = qk_layer_norms
353
+ if self.qk_layer_norms:
354
+ self.q_layer_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps)
355
+ self.k_layer_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps)
356
+
357
+ self.rotary_emb = MistralRotaryEmbedding(
358
+ self.head_dim,
359
+ max_position_embeddings=self.max_position_embeddings,
360
+ base=self.rope_theta,
361
+ )
362
+
363
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
364
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
365
+
366
+ def forward(
367
+ self,
368
+ hidden_states: torch.Tensor,
369
+ attention_mask: Optional[torch.Tensor] = None,
370
+ position_ids: Optional[torch.LongTensor] = None,
371
+ past_key_value: Optional[Cache] = None,
372
+ output_attentions: bool = False,
373
+ use_cache: bool = False,
374
+ **kwargs,
375
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
376
+ if "padding_mask" in kwargs:
377
+ warnings.warn(
378
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
379
+ )
380
+ bsz, q_len, _ = hidden_states.size()
381
+
382
+ query_states = self.q_proj(hidden_states)
383
+ key_states = self.k_proj(hidden_states)
384
+ value_states = self.v_proj(hidden_states)
385
+
386
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
387
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
388
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
389
+
390
+ kv_seq_len = key_states.shape[-2]
391
+ if past_key_value is not None:
392
+ if self.layer_idx is None:
393
+ raise ValueError(
394
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
395
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
396
+ "with a layer index."
397
+ )
398
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
399
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
400
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
401
+
402
+ if past_key_value is not None:
403
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
404
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
405
+
406
+ if self.qk_layer_norms:
407
+ query_states = self.q_layer_norm(query_states)
408
+ key_states = self.k_layer_norm(key_states)
409
+
410
+ # repeat k/v heads if n_kv_heads < n_heads
411
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
412
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
413
+
414
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
415
+
416
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
417
+ raise ValueError(
418
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
419
+ f" {attn_weights.size()}"
420
+ )
421
+
422
+ if attention_mask is not None:
423
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
424
+ raise ValueError(
425
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
426
+ )
427
+
428
+ attn_weights = attn_weights + attention_mask
429
+
430
+ # upcast attention to fp32
431
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
432
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
433
+ attn_output = torch.matmul(attn_weights, value_states)
434
+
435
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
436
+ raise ValueError(
437
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
438
+ f" {attn_output.size()}"
439
+ )
440
+
441
+ attn_output = attn_output.transpose(1, 2).contiguous()
442
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
443
+
444
+ attn_output = self.o_proj(attn_output)
445
+
446
+ if not output_attentions:
447
+ attn_weights = None
448
+
449
+ return attn_output, attn_weights, past_key_value
450
+
451
+
452
+ class MistralFlashAttention2(MistralAttention):
453
+ """
454
+ Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
455
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
456
+ flash attention and deal with padding tokens in case the input contains any of them.
457
+ """
458
+
459
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
460
+ def __init__(self, *args, **kwargs):
461
+ super().__init__(*args, **kwargs)
462
+
463
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
464
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
465
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
466
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
467
+
468
+ def forward(
469
+ self,
470
+ hidden_states: torch.Tensor,
471
+ attention_mask: Optional[torch.Tensor] = None,
472
+ position_ids: Optional[torch.LongTensor] = None,
473
+ past_key_value: Optional[Cache] = None,
474
+ output_attentions: bool = False,
475
+ use_cache: bool = False,
476
+ **kwargs,
477
+ ):
478
+ if "padding_mask" in kwargs:
479
+ warnings.warn(
480
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
481
+ )
482
+
483
+ # overwrite attention_mask with padding_mask
484
+ attention_mask = kwargs.pop("padding_mask")
485
+ bsz, q_len, _ = hidden_states.size()
486
+
487
+ query_states = self.q_proj(hidden_states)
488
+ key_states = self.k_proj(hidden_states)
489
+ value_states = self.v_proj(hidden_states)
490
+
491
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
492
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
493
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
494
+
495
+ kv_seq_len = key_states.shape[-2]
496
+ if past_key_value is not None:
497
+ if self.layer_idx is None:
498
+ raise ValueError(
499
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
500
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
501
+ "with a layer index."
502
+ )
503
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
504
+
505
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
506
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
507
+ cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
508
+
509
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
510
+
511
+ use_sliding_windows = (
512
+ _flash_supports_window_size
513
+ and getattr(self.config, "sliding_window", None) is not None
514
+ and kv_seq_len > self.config.sliding_window
515
+ )
516
+
517
+ if not _flash_supports_window_size:
518
+ logger.warning_once(
519
+ "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
520
+ " make sure to upgrade flash-attn library."
521
+ )
522
+
523
+ if past_key_value is not None:
524
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
525
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
526
+ if (
527
+ getattr(self.config, "sliding_window", None) is not None
528
+ and kv_seq_len > self.config.sliding_window
529
+ and cache_has_contents
530
+ ):
531
+ slicing_tokens = 1 - self.config.sliding_window
532
+
533
+ past_key = past_key_value[self.layer_idx][0]
534
+ past_value = past_key_value[self.layer_idx][1]
535
+
536
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
537
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
538
+
539
+ if past_key.shape[-2] != self.config.sliding_window - 1:
540
+ raise ValueError(
541
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
542
+ f" {past_key.shape}"
543
+ )
544
+
545
+ if attention_mask is not None:
546
+ attention_mask = attention_mask[:, slicing_tokens:]
547
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
548
+
549
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
550
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
551
+
552
+ # repeat k/v heads if n_kv_heads < n_heads
553
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
554
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
555
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
556
+
557
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
558
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
559
+ # cast them back in float16 just to be sure everything works as expected.
560
+ input_dtype = query_states.dtype
561
+ if input_dtype == torch.float32:
562
+ if torch.is_autocast_enabled():
563
+ target_dtype = torch.get_autocast_gpu_dtype()
564
+ # Handle the case where the model is quantized
565
+ elif hasattr(self.config, "_pre_quantization_dtype"):
566
+ target_dtype = self.config._pre_quantization_dtype
567
+ else:
568
+ target_dtype = self.q_proj.weight.dtype
569
+
570
+ logger.warning_once(
571
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
572
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
573
+ f" {target_dtype}."
574
+ )
575
+
576
+ query_states = query_states.to(target_dtype)
577
+ key_states = key_states.to(target_dtype)
578
+ value_states = value_states.to(target_dtype)
579
+
580
+ # Reashape to the expected shape for Flash Attention
581
+ query_states = query_states.transpose(1, 2)
582
+ key_states = key_states.transpose(1, 2)
583
+ value_states = value_states.transpose(1, 2)
584
+
585
+ attn_output = self._flash_attention_forward(
586
+ query_states,
587
+ key_states,
588
+ value_states,
589
+ attention_mask,
590
+ q_len,
591
+ dropout=dropout_rate,
592
+ use_sliding_windows=use_sliding_windows,
593
+ )
594
+
595
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
596
+ attn_output = self.o_proj(attn_output)
597
+
598
+ if not output_attentions:
599
+ attn_weights = None
600
+
601
+ return attn_output, attn_weights, past_key_value
602
+
603
+ def _flash_attention_forward(
604
+ self,
605
+ query_states,
606
+ key_states,
607
+ value_states,
608
+ attention_mask,
609
+ query_length,
610
+ dropout=0.0,
611
+ softmax_scale=None,
612
+ use_sliding_windows=False,
613
+ ):
614
+ """
615
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
616
+ first unpad the input, then computes the attention scores and pad the final attention scores.
617
+ Args:
618
+ query_states (`torch.Tensor`):
619
+ Input query states to be passed to Flash Attention API
620
+ key_states (`torch.Tensor`):
621
+ Input key states to be passed to Flash Attention API
622
+ value_states (`torch.Tensor`):
623
+ Input value states to be passed to Flash Attention API
624
+ attention_mask (`torch.Tensor`):
625
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
626
+ position of padding tokens and 1 for the position of non-padding tokens.
627
+ dropout (`int`, *optional*):
628
+ Attention dropout
629
+ softmax_scale (`float`, *optional*):
630
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
631
+ use_sliding_windows (`bool`, *optional*):
632
+ Whether to activate sliding window attention.
633
+ """
634
+ if not self._flash_attn_uses_top_left_mask:
635
+ causal = self.is_causal
636
+ else:
637
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
638
+ causal = self.is_causal and query_length != 1
639
+
640
+ # Contains at least one padding token in the sequence
641
+ if attention_mask is not None:
642
+ batch_size = query_states.shape[0]
643
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
644
+ query_states, key_states, value_states, attention_mask, query_length
645
+ )
646
+
647
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
648
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
649
+
650
+ if not use_sliding_windows:
651
+ attn_output_unpad = flash_attn_varlen_func(
652
+ query_states,
653
+ key_states,
654
+ value_states,
655
+ cu_seqlens_q=cu_seqlens_q,
656
+ cu_seqlens_k=cu_seqlens_k,
657
+ max_seqlen_q=max_seqlen_in_batch_q,
658
+ max_seqlen_k=max_seqlen_in_batch_k,
659
+ dropout_p=dropout,
660
+ softmax_scale=softmax_scale,
661
+ causal=causal,
662
+ )
663
+ else:
664
+ attn_output_unpad = flash_attn_varlen_func(
665
+ query_states,
666
+ key_states,
667
+ value_states,
668
+ cu_seqlens_q=cu_seqlens_q,
669
+ cu_seqlens_k=cu_seqlens_k,
670
+ max_seqlen_q=max_seqlen_in_batch_q,
671
+ max_seqlen_k=max_seqlen_in_batch_k,
672
+ dropout_p=dropout,
673
+ softmax_scale=softmax_scale,
674
+ causal=causal,
675
+ window_size=(self.config.sliding_window, self.config.sliding_window),
676
+ )
677
+
678
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
679
+ else:
680
+ if not use_sliding_windows:
681
+ attn_output = flash_attn_func(
682
+ query_states,
683
+ key_states,
684
+ value_states,
685
+ dropout,
686
+ softmax_scale=softmax_scale,
687
+ causal=causal,
688
+ )
689
+ else:
690
+ attn_output = flash_attn_func(
691
+ query_states,
692
+ key_states,
693
+ value_states,
694
+ dropout,
695
+ softmax_scale=softmax_scale,
696
+ causal=causal,
697
+ window_size=(self.config.sliding_window, self.config.sliding_window),
698
+ )
699
+
700
+ return attn_output
701
+
702
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
703
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
704
+
705
+ # On the first iteration we need to properly re-create the padding mask
706
+ # by slicing it on the proper place
707
+ if kv_seq_len != attention_mask.shape[-1]:
708
+ attention_mask_num_tokens = attention_mask.shape[-1]
709
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
710
+
711
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
712
+
713
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
714
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
715
+
716
+ if query_length == kv_seq_len:
717
+ query_layer = index_first_axis(
718
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
719
+ )
720
+ cu_seqlens_q = cu_seqlens_k
721
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
722
+ indices_q = indices_k
723
+ elif query_length == 1:
724
+ max_seqlen_in_batch_q = 1
725
+ cu_seqlens_q = torch.arange(
726
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
727
+ ) # There is a memcpy here, that is very bad.
728
+ indices_q = cu_seqlens_q[:-1]
729
+ query_layer = query_layer.squeeze(1)
730
+ else:
731
+ # The -q_len: slice assumes left padding.
732
+ attention_mask = attention_mask[:, -query_length:]
733
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
734
+
735
+ return (
736
+ query_layer,
737
+ key_layer,
738
+ value_layer,
739
+ indices_q,
740
+ (cu_seqlens_q, cu_seqlens_k),
741
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
742
+ )
743
+
744
+
745
+ class MistralDecoderLayer(nn.Module):
746
+ def __init__(self, config: Idefics2Config, layer_idx: int):
747
+ super().__init__()
748
+ self.hidden_size = config.hidden_size
749
+ self.self_attn = (
750
+ MistralAttention(config=config, layer_idx=layer_idx)
751
+ if not getattr(config, "_flash_attn_2_enabled", False)
752
+ else MistralFlashAttention2(config=config, layer_idx=layer_idx)
753
+ )
754
+ self.mlp = MLP(
755
+ activation=config.hidden_act,
756
+ input_size=config.hidden_size,
757
+ intermediate_size=config.intermediate_size,
758
+ output_size=config.hidden_size,
759
+ )
760
+ self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
761
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
762
+
763
+ def forward(
764
+ self,
765
+ hidden_states: torch.Tensor,
766
+ attention_mask: Optional[torch.Tensor] = None,
767
+ position_ids: Optional[torch.LongTensor] = None,
768
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
769
+ output_attentions: Optional[bool] = False,
770
+ use_cache: Optional[bool] = False,
771
+ **kwargs,
772
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
773
+ if "padding_mask" in kwargs:
774
+ warnings.warn(
775
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
776
+ )
777
+ """
778
+ Args:
779
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
780
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
781
+ `(batch, sequence_length)` where padding elements are indicated by 0.
782
+ output_attentions (`bool`, *optional*):
783
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
784
+ returned tensors for more detail.
785
+ use_cache (`bool`, *optional*):
786
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
787
+ (see `past_key_values`).
788
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
789
+ """
790
+
791
+ residual = hidden_states
792
+
793
+ hidden_states = self.input_layernorm(hidden_states)
794
+
795
+ # Self Attention
796
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
797
+ hidden_states=hidden_states,
798
+ attention_mask=attention_mask,
799
+ position_ids=position_ids,
800
+ past_key_value=past_key_value,
801
+ output_attentions=output_attentions,
802
+ use_cache=use_cache,
803
+ )
804
+ hidden_states = residual + hidden_states
805
+
806
+ # Fully Connected
807
+ residual = hidden_states
808
+ hidden_states = self.post_attention_layernorm(hidden_states)
809
+ hidden_states = self.mlp(hidden_states)
810
+ hidden_states = residual + hidden_states
811
+
812
+ outputs = (hidden_states,)
813
+
814
+ if output_attentions:
815
+ outputs += (self_attn_weights,)
816
+
817
+ if use_cache:
818
+ outputs += (present_key_value,)
819
+
820
+ return outputs
821
+
822
+
823
+ MISTRAL_START_DOCSTRING = r"""
824
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
825
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
826
+ etc.)
827
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
828
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
829
+ and behavior.
830
+ Parameters:
831
+ config ([`Idefics2Config`]):
832
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
833
+ load the weights associated with the model, only the configuration. Check out the
834
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
835
+ """
836
+
837
+
838
+ @add_start_docstrings(
839
+ "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
840
+ MISTRAL_START_DOCSTRING,
841
+ )
842
+ class Idefics2PreTrainedModel(PreTrainedModel):
843
+ config_class = Idefics2Config
844
+ base_model_prefix = "model"
845
+ supports_gradient_checkpointing = True
846
+ _no_split_modules = ["MistralDecoderLayer"]
847
+ _skip_keys_device_placement = "past_key_values"
848
+ _supports_sdpa = False
849
+
850
+ def _init_weights(self, module):
851
+ # important: this ported version of the model isn't meant for training from scratch - only
852
+ # inference and fine-tuning - so the proper init weights code has been removed - the m4 code
853
+ # base should be used for training from scratch and it contains the correct code.
854
+ std = self.config.initializer_range
855
+ if isinstance(module, nn.Linear):
856
+ module.weight.data.normal_(mean=0.0, std=std)
857
+ if module.bias is not None:
858
+ module.bias.data.zero_()
859
+ elif isinstance(module, nn.Embedding):
860
+ module.weight.data.normal_(mean=0.0, std=std)
861
+ if module.padding_idx is not None:
862
+ module.weight.data[module.padding_idx].zero_()
863
+
864
+
865
+ MISTRAL_INPUTS_DOCSTRING = r"""
866
+ Args:
867
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
868
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
869
+ it.
870
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
871
+ [`PreTrainedTokenizer.__call__`] for details.
872
+ [What are input IDs?](../glossary#input-ids)
873
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
874
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
875
+ - 1 for tokens that are **not masked**,
876
+ - 0 for tokens that are **masked**.
877
+ [What are attention masks?](../glossary#attention-mask)
878
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
879
+ [`PreTrainedTokenizer.__call__`] for details.
880
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
881
+ `past_key_values`).
882
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
883
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
884
+ information on the default strategy.
885
+ - 1 indicates the head is **not masked**,
886
+ - 0 indicates the head is **masked**.
887
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
888
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
889
+ config.n_positions - 1]`.
890
+ [What are position IDs?](../glossary#position-ids)
891
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
892
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
893
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
894
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
895
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
896
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
897
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
898
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
899
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
900
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
901
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
902
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
903
+ model's internal embedding lookup matrix.
904
+ use_cache (`bool`, *optional*):
905
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
906
+ `past_key_values`).
907
+ output_attentions (`bool`, *optional*):
908
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
909
+ tensors for more detail.
910
+ output_hidden_states (`bool`, *optional*):
911
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
912
+ more detail.
913
+ return_dict (`bool`, *optional*):
914
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
915
+ """
916
+
917
+
918
+ @add_start_docstrings(
919
+ "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
920
+ MISTRAL_START_DOCSTRING,
921
+ )
922
+ class Idefics2Model(Idefics2PreTrainedModel):
923
+ """
924
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
925
+ Args:
926
+ config: Idefics2Config
927
+ """
928
+
929
+ def __init__(self, config: Idefics2Config, vision_model=None):
930
+ super().__init__(config)
931
+ self.config = config
932
+ self.padding_idx = config.pad_token_id
933
+ self.vocab_size = config.vocab_size
934
+
935
+ self.sliding_window = config.sliding_window
936
+
937
+ self.embed_tokens = DecoupledEmbedding(
938
+ num_embeddings=config.vocab_size,
939
+ num_additional_embeddings=config.additional_vocab_size,
940
+ embedding_dim=config.hidden_size,
941
+ partially_freeze=config.freeze_text_layers,
942
+ padding_idx=self.padding_idx,
943
+ )
944
+
945
+ # Load an uninitialized model and later in from_pretrained will load the pre-trained model -
946
+ # this solves the losing of weights in `from_pretrained` on the main model
947
+ self.vision_model = SiglipVisionTransformer(config.vision_config)
948
+
949
+ # Dim projection - projecting from the vision dim to the text dim
950
+ self.modality_projection = MLP(
951
+ activation=self.config.hidden_act,
952
+ input_size=self.config.vision_config.hidden_size,
953
+ intermediate_size=self.config.intermediate_size,
954
+ output_size=self.config.hidden_size,
955
+ )
956
+
957
+ # Perceiver Resampler
958
+ if not config.use_resampler:
959
+ raise ValueError("NOT using the resampler is deprecated.")
960
+
961
+ if config.use_resampler:
962
+ self.perceiver_resampler = PerceiverResampler(config)
963
+
964
+ if config.use_resampler:
965
+ self.image_seq_len = config.perceiver_config.resampler_n_latents
966
+ else:
967
+ self.image_seq_len = (
968
+ config.vision_config.image_size // config.vision_config.patch_size
969
+ ) ** 2
970
+
971
+ self.image_token_id = self.config.image_token_id
972
+
973
+ self.layers = nn.ModuleList([MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
974
+
975
+ self.gradient_checkpointing = False
976
+
977
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
978
+
979
+ # Initialize weights and apply final processing
980
+ self.post_init()
981
+
982
+ self.freeze_relevant_params(config)
983
+
984
+ def enable_input_require_grads(self):
985
+ """
986
+ Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping
987
+ the model weights fixed.
988
+ """
989
+
990
+ def get_lowest_module(module):
991
+ if len(list(module.children())) == 0:
992
+ # If the module has no children, it is a leaf module (e.g., Linear, Conv2d, etc.)
993
+ return module
994
+ else:
995
+ # Recursively call the function on each child module
996
+ return get_lowest_module(list(module.children())[0])
997
+
998
+ def make_inputs_require_grads(module, input, output):
999
+ output.requires_grad_(True)
1000
+
1001
+ self._text_require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)
1002
+ self._vision_require_grads_hook = get_lowest_module(self.vision_model).register_forward_hook(
1003
+ make_inputs_require_grads
1004
+ )
1005
+
1006
+ def freeze_relevant_params(self, config=None):
1007
+ if config is None:
1008
+ config = self.config
1009
+
1010
+ if config.freeze_text_layers:
1011
+ self.freeze_text_layers(config.freeze_text_module_exceptions)
1012
+
1013
+ if config.freeze_vision_layers:
1014
+ freeze_model(self.vision_model, module_exceptions=config.freeze_vision_module_exceptions)
1015
+
1016
+ def freeze_text_layers(self, module_exceptions):
1017
+ for module in [self.layers, self.norm]:
1018
+ freeze_model(module, module_exceptions=module_exceptions)
1019
+
1020
+ def get_input_embeddings(self):
1021
+ return self.embed_tokens
1022
+
1023
+ def set_input_embeddings(self, value):
1024
+ self.embed_tokens = value
1025
+
1026
+ def inputs_merger(
1027
+ self,
1028
+ input_ids: torch.LongTensor = None,
1029
+ inputs_embeds: Optional[torch.Tensor] = None,
1030
+ image_hidden_states: Optional[torch.Tensor] = None,
1031
+ ):
1032
+ """
1033
+ This method aims at merging the token embeddings with the image hidden states into one single sequence of vectors that are fed to the transformer LM.
1034
+ The merging happens as follows:
1035
+ - The text token sequence is: `tok_1 tok_2 tok_3 <fake_token_around_image> <image> <image> ... <image> <fake_token_around_image> tok_4`.
1036
+ - We get the image hidden states for the image through the vision encoder (and potentially the perceiver), and that hidden state is then projected into the text embedding space.
1037
+ We thus have a sequence of image hidden states of size (1, image_seq_len, hidden_dim), where 1 is for batch_size of 1 image and hidden_dim is the hidden_dim of the LM transformer.
1038
+ - The merging happens so that we obtain the following sequence: `vector_tok_1 vector_tok_2 vector_tok_3 vector_fake_tok_around_image {sequence of image_seq_len image hidden states} vector_fake_toke_around_image vector_tok_4`. That sequence is fed to the LM.
1039
+ - To fit the format of that sequence, `input_ids`, `input_embeds`, `attention_mask` are all 3 adapted to insert the image hidden states.
1040
+ """
1041
+ batch_size = input_ids.size(0)
1042
+
1043
+ if inputs_embeds is not None:
1044
+ if image_hidden_states is not None:
1045
+ vision_pipeline_output_seq_len = image_hidden_states.shape[1]
1046
+ vision_hidden_size = image_hidden_states.shape[2]
1047
+ new_inputs_embeds = inputs_embeds.clone()
1048
+ # Get the number of images for each example
1049
+ num_images = (input_ids == self.image_token_id).sum(dim=-1) // self.image_seq_len
1050
+ cum_num_images = num_images.cumsum(dim=-1)
1051
+ for batch_idx in range(batch_size):
1052
+ # Get the number of images for this particular example
1053
+ example_num_images = num_images[batch_idx]
1054
+ # Get the image_hidden_states corresponding to True images for the example, so get rid of the padding images.
1055
+ start = 0 if batch_idx == 0 else cum_num_images[batch_idx - 1]
1056
+ end = cum_num_images[batch_idx]
1057
+ example_true_image_hidden_states = image_hidden_states[start:end]
1058
+ if (
1059
+ new_inputs_embeds[batch_idx][input_ids[batch_idx] == self.image_token_id].shape[0]
1060
+ != example_num_images * vision_pipeline_output_seq_len
1061
+ ):
1062
+ raise ValueError(
1063
+ "new_inputs_embeds to replace has shape[0]:"
1064
+ f" {new_inputs_embeds[batch_idx][input_ids[batch_idx] == self.image_token_id].shape[0]} but"
1065
+ " should have shape[0]:"
1066
+ f" {example_num_images}*{vision_pipeline_output_seq_len}={example_num_images * vision_pipeline_output_seq_len} "
1067
+ )
1068
+ # Insert the image_hidden_states
1069
+ new_inputs_embeds[batch_idx][input_ids[batch_idx] == self.image_token_id] = (
1070
+ example_true_image_hidden_states.view(
1071
+ example_num_images * vision_pipeline_output_seq_len,
1072
+ vision_hidden_size,
1073
+ )
1074
+ )
1075
+ else:
1076
+ new_inputs_embeds = inputs_embeds
1077
+
1078
+ return_dict = {}
1079
+ if inputs_embeds is not None:
1080
+ return_dict["inputs_embeds"] = new_inputs_embeds
1081
+
1082
+ return return_dict
1083
+
1084
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
1085
+ def forward(
1086
+ self,
1087
+ input_ids: torch.LongTensor = None,
1088
+ attention_mask: Optional[torch.Tensor] = None,
1089
+ position_ids: Optional[torch.LongTensor] = None,
1090
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1091
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1092
+ pixel_values: Optional[torch.FloatTensor] = None,
1093
+ pixel_attention_mask: Optional[torch.BoolTensor] = None,
1094
+ image_hidden_states: Optional[torch.FloatTensor] = None,
1095
+ use_cache: Optional[bool] = None,
1096
+ output_attentions: Optional[bool] = None,
1097
+ output_hidden_states: Optional[bool] = None,
1098
+ return_dict: Optional[bool] = None,
1099
+ ) -> Union[Tuple, Idefics2BaseModelOutputWithPast]:
1100
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1101
+
1102
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1103
+ output_hidden_states = (
1104
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1105
+ )
1106
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1107
+
1108
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1109
+
1110
+ # retrieve input_ids and inputs_embeds
1111
+ if input_ids is not None and inputs_embeds is not None:
1112
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
1113
+ elif input_ids is not None:
1114
+ batch_size, seq_length = input_ids.shape
1115
+ elif inputs_embeds is not None:
1116
+ batch_size, seq_length, _ = inputs_embeds.shape
1117
+ else:
1118
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
1119
+
1120
+ if self.gradient_checkpointing and self.training:
1121
+ if use_cache:
1122
+ logger.warning_once(
1123
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1124
+ )
1125
+ use_cache = False
1126
+
1127
+ past_key_values_length = 0
1128
+
1129
+ if use_cache:
1130
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1131
+ if use_legacy_cache:
1132
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1133
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1134
+
1135
+ if position_ids is None:
1136
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1137
+ position_ids = torch.arange(
1138
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1139
+ )
1140
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1141
+ else:
1142
+ position_ids = position_ids.view(-1, seq_length).long()
1143
+
1144
+ if inputs_embeds is None:
1145
+ inputs_embeds = self.embed_tokens(input_ids)
1146
+
1147
+ # START VISUAL INPUTS INTEGRATION
1148
+ if pixel_values is not None and image_hidden_states is not None:
1149
+ raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time")
1150
+ elif pixel_values is not None:
1151
+ pixel_values = pixel_values.to(dtype=self.dtype, device=input_ids.device) # fp16 compatibility
1152
+ batch_size, num_images = pixel_values.size(0), pixel_values.size(1)
1153
+ pixel_values = pixel_values.view(batch_size * num_images, *pixel_values.shape[2:])
1154
+
1155
+ # Remove padding images - padding images are full 0.
1156
+ nb_values_per_image = pixel_values.shape[1:].numel()
1157
+ real_images_inds = (pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image
1158
+ pixel_values = pixel_values[real_images_inds].contiguous()
1159
+
1160
+ # Handle the vision attention mask
1161
+ if pixel_attention_mask is None:
1162
+ pixel_attention_mask = torch.ones(
1163
+ size=(pixel_values.size(0), pixel_values.size(2), pixel_values.size(3)),
1164
+ dtype=torch.bool,
1165
+ device=pixel_values.device,
1166
+ )
1167
+ else:
1168
+ # Remove padding images from the mask
1169
+ pixel_attention_mask = pixel_attention_mask.view(
1170
+ batch_size * num_images, *pixel_attention_mask.shape[2:]
1171
+ )
1172
+ pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous()
1173
+
1174
+ patches_subgrid = pixel_attention_mask.unfold(
1175
+ dimension=1, size=self.config.vision_config.patch_size, step=self.config.vision_config.patch_size
1176
+ ).unfold(dimension=2, size=self.config.vision_config.patch_size, step=self.config.vision_config.patch_size)
1177
+ patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
1178
+
1179
+ # Get sequence from the vision encoder
1180
+ image_hidden_states = self.vision_model(
1181
+ pixel_values=pixel_values,
1182
+ patch_attention_mask=patch_attention_mask,
1183
+ ).last_hidden_state
1184
+
1185
+ # Modality projection
1186
+ image_hidden_states = self.modality_projection(image_hidden_states)
1187
+
1188
+ if self.config.use_resampler:
1189
+ image_hidden_states = self.perceiver_resampler(
1190
+ context=image_hidden_states, attention_mask=patch_attention_mask.view(pixel_values.size(0), -1)
1191
+ )
1192
+ elif image_hidden_states is not None:
1193
+ image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device)
1194
+
1195
+ if past_key_values_length == 0:
1196
+ # When we generate, we don't want to replace the potential image_token_id that we generated by images
1197
+ # that simply don't exist
1198
+ new_inp = self.inputs_merger(
1199
+ input_ids=input_ids,
1200
+ inputs_embeds=inputs_embeds,
1201
+ image_hidden_states=image_hidden_states,
1202
+ )
1203
+ inputs_embeds = new_inp["inputs_embeds"]
1204
+
1205
+ # Can do add some token types embeddings here (image token vs text token)
1206
+ # something like inputs_embeds += self.token_types(token_types)
1207
+
1208
+ # embed positions
1209
+ if (
1210
+ attention_mask is not None
1211
+ and hasattr(self.config, "_flash_attn_2_enabled")
1212
+ and self.config._flash_attn_2_enabled
1213
+ and use_cache
1214
+ ):
1215
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1216
+ if is_padding_right:
1217
+ raise ValueError(
1218
+ "You are attempting to perform batched generation with padding_side='right'"
1219
+ " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
1220
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1221
+ )
1222
+
1223
+ if getattr(self.config, "_flash_attn_2_enabled", False):
1224
+ # 2d mask is passed through the layers
1225
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1226
+ else:
1227
+ # 4d mask is passed through the layers
1228
+ attention_mask = _prepare_4d_causal_attention_mask(
1229
+ attention_mask,
1230
+ (batch_size, seq_length),
1231
+ inputs_embeds,
1232
+ past_key_values_length,
1233
+ sliding_window=self.config.sliding_window,
1234
+ )
1235
+
1236
+ hidden_states = inputs_embeds
1237
+
1238
+ # decoder layers
1239
+ all_hidden_states = () if output_hidden_states else None
1240
+ all_self_attns = () if output_attentions else None
1241
+ next_decoder_cache = None
1242
+
1243
+ for decoder_layer in self.layers:
1244
+ if output_hidden_states:
1245
+ all_hidden_states += (hidden_states,)
1246
+
1247
+ if self.gradient_checkpointing and self.training:
1248
+ layer_outputs = self._gradient_checkpointing_func(
1249
+ decoder_layer.__call__,
1250
+ hidden_states,
1251
+ attention_mask,
1252
+ position_ids,
1253
+ past_key_values,
1254
+ output_attentions,
1255
+ use_cache,
1256
+ )
1257
+ else:
1258
+ layer_outputs = decoder_layer(
1259
+ hidden_states,
1260
+ attention_mask=attention_mask,
1261
+ position_ids=position_ids,
1262
+ past_key_value=past_key_values,
1263
+ output_attentions=output_attentions,
1264
+ use_cache=use_cache,
1265
+ )
1266
+
1267
+ hidden_states = layer_outputs[0]
1268
+
1269
+ if use_cache:
1270
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1271
+
1272
+ if output_attentions:
1273
+ all_self_attns += (layer_outputs[1],)
1274
+
1275
+ hidden_states = self.norm(hidden_states)
1276
+
1277
+ # add hidden states from the last decoder layer
1278
+ if output_hidden_states:
1279
+ all_hidden_states += (hidden_states,)
1280
+
1281
+ next_cache = None
1282
+ if use_cache:
1283
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1284
+
1285
+ if not return_dict:
1286
+ return tuple(
1287
+ v
1288
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, image_hidden_states]
1289
+ if v is not None
1290
+ )
1291
+ return Idefics2BaseModelOutputWithPast(
1292
+ last_hidden_state=hidden_states,
1293
+ past_key_values=next_cache,
1294
+ hidden_states=all_hidden_states,
1295
+ attentions=all_self_attns,
1296
+ image_hidden_states=image_hidden_states,
1297
+ )
1298
+
1299
+
1300
+ class Idefics2ForVisionText2Text(Idefics2PreTrainedModel):
1301
+ _tied_weights_keys = ["lm_head.weight"]
1302
+
1303
+ def __init__(self, config, vision_model=None):
1304
+ super().__init__(config)
1305
+ self.model = Idefics2Model(config, vision_model=vision_model)
1306
+ self.image_token_id = self.config.image_token_id
1307
+ self.lm_head = DecoupledLinear(
1308
+ in_features=config.hidden_size,
1309
+ out_features=config.vocab_size,
1310
+ out_additional_features=config.additional_vocab_size,
1311
+ bias=False,
1312
+ partially_freeze=config.freeze_lm_head,
1313
+ )
1314
+
1315
+ # Initialize weights and apply final processing
1316
+ self.post_init()
1317
+
1318
+ def enable_input_require_grads(self):
1319
+ """
1320
+ Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping
1321
+ the model weights fixed.
1322
+ """
1323
+
1324
+ def get_lowest_module(module):
1325
+ if len(list(module.children())) == 0:
1326
+ # If the module has no children, it is a leaf module (e.g., Linear, Conv2d, etc.)
1327
+ return module
1328
+ else:
1329
+ # Recursively call the function on each child module
1330
+ return get_lowest_module(list(module.children())[0])
1331
+
1332
+ def make_inputs_require_grads(module, input, output):
1333
+ output.requires_grad_(True)
1334
+
1335
+ self._text_require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)
1336
+ self._vision_require_grads_hook = get_lowest_module(self.model.vision_model).register_forward_hook(
1337
+ make_inputs_require_grads
1338
+ )
1339
+
1340
+ def get_input_embeddings(self):
1341
+ return self.model.embed_tokens
1342
+
1343
+ def set_input_embeddings(self, value):
1344
+ self.model.embed_tokens = value
1345
+
1346
+ def get_output_embeddings(self):
1347
+ return self.lm_head
1348
+
1349
+ def set_output_embeddings(self, new_embeddings):
1350
+ self.lm_head = new_embeddings
1351
+
1352
+ def set_decoder(self, decoder):
1353
+ self.model = decoder
1354
+
1355
+ def get_decoder(self):
1356
+ return self.model
1357
+
1358
+ def tie_weights(self):
1359
+ """
1360
+ Overwrite `transformers.modeling_utils.PreTrainedModel.tie_weights` to handle the case of DecoupledLinear and DecoupledEmbedding.
1361
+ """
1362
+ output_embeddings = self.get_output_embeddings()
1363
+ input_embeddings = self.get_input_embeddings()
1364
+
1365
+ if getattr(self.config, "tie_word_embeddings", True):
1366
+ output_embeddings.weight = input_embeddings.weight
1367
+ if input_embeddings.num_additional_embeddings > 0:
1368
+ assert output_embeddings.out_additional_features == input_embeddings.num_additional_embeddings
1369
+ output_embeddings.additional_fc.weight = input_embeddings.additional_embedding.weight
1370
+
1371
+ if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
1372
+ output_embeddings.out_features = input_embeddings.num_embeddings
1373
+ if hasattr(output_embeddings, "out_additional_features") and hasattr(
1374
+ input_embeddings, "num_additional_embeddings"
1375
+ ):
1376
+ output_embeddings.out_additional_features = input_embeddings.num_additional_embeddings
1377
+
1378
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
1379
+ @replace_return_docstrings(output_type=Idefics2CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1380
+ def forward(
1381
+ self,
1382
+ input_ids: torch.LongTensor = None,
1383
+ attention_mask: Optional[torch.Tensor] = None,
1384
+ position_ids: Optional[torch.LongTensor] = None,
1385
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1386
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1387
+ pixel_values: Optional[torch.FloatTensor] = None,
1388
+ pixel_attention_mask: Optional[torch.BoolTensor] = None,
1389
+ image_hidden_states: Optional[torch.FloatTensor] = None,
1390
+ labels: Optional[torch.LongTensor] = None,
1391
+ use_cache: Optional[bool] = None,
1392
+ output_attentions: Optional[bool] = None,
1393
+ output_hidden_states: Optional[bool] = None,
1394
+ return_dict: Optional[bool] = None,
1395
+ ) -> Union[Tuple, Idefics2CausalLMOutputWithPast]:
1396
+ r"""
1397
+ Args:
1398
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1399
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1400
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1401
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1402
+ Returns:
1403
+ """
1404
+
1405
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1406
+ output_hidden_states = (
1407
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1408
+ )
1409
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1410
+
1411
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1412
+ outputs = self.model(
1413
+ input_ids=input_ids,
1414
+ attention_mask=attention_mask,
1415
+ position_ids=position_ids,
1416
+ past_key_values=past_key_values,
1417
+ inputs_embeds=inputs_embeds,
1418
+ pixel_values=pixel_values,
1419
+ pixel_attention_mask=pixel_attention_mask,
1420
+ image_hidden_states=image_hidden_states,
1421
+ use_cache=use_cache,
1422
+ output_attentions=output_attentions,
1423
+ output_hidden_states=output_hidden_states,
1424
+ return_dict=return_dict,
1425
+ )
1426
+
1427
+ hidden_states = outputs[0]
1428
+ logits = self.lm_head(hidden_states)
1429
+ logits = logits.float()
1430
+
1431
+ loss = None
1432
+ if labels is not None:
1433
+ labels = labels.to(logits.device)
1434
+ # Shift so that tokens < n predict n
1435
+ if attention_mask is not None:
1436
+ shift_attention_mask = attention_mask[..., 1:].to(logits.device)
1437
+ shift_logits = logits[..., :-1, :][shift_attention_mask != 0].contiguous()
1438
+ shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous()
1439
+ else:
1440
+ shift_logits = logits[..., :-1, :].contiguous()
1441
+ shift_labels = labels[..., 1:].contiguous()
1442
+ # Flatten the tokens
1443
+ loss_fct = CrossEntropyLoss(ignore_index=self.image_token_id)
1444
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1445
+
1446
+ if not return_dict:
1447
+ output = (logits,) + outputs[1:]
1448
+ return (loss,) + output if loss is not None else output
1449
+
1450
+ return Idefics2CausalLMOutputWithPast(
1451
+ loss=loss,
1452
+ logits=logits,
1453
+ past_key_values=outputs.past_key_values,
1454
+ hidden_states=outputs.hidden_states,
1455
+ attentions=outputs.attentions,
1456
+ image_hidden_states=outputs.image_hidden_states,
1457
+ )
1458
+
1459
+ def prepare_inputs_for_generation(
1460
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1461
+ ):
1462
+ # Omit tokens covered by past_key_values
1463
+ if past_key_values is not None:
1464
+ if isinstance(past_key_values, Cache):
1465
+ cache_length = past_key_values.get_seq_length()
1466
+ past_length = past_key_values.seen_tokens
1467
+ max_cache_length = past_key_values.get_max_length()
1468
+ else:
1469
+ cache_length = past_length = past_key_values[0][0].shape[2]
1470
+ max_cache_length = None
1471
+
1472
+ # Keep only the unprocessed tokens:
1473
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1474
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1475
+ # input)
1476
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1477
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1478
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1479
+ # input_ids based on the past_length.
1480
+ elif past_length < input_ids.shape[1]:
1481
+ input_ids = input_ids[:, past_length:]
1482
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1483
+
1484
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1485
+ if (
1486
+ max_cache_length is not None
1487
+ and attention_mask is not None
1488
+ and cache_length + input_ids.shape[1] > max_cache_length
1489
+ ):
1490
+ attention_mask = attention_mask[:, -max_cache_length:]
1491
+
1492
+ position_ids = kwargs.get("position_ids", None)
1493
+ if attention_mask is not None and position_ids is None:
1494
+ # create position_ids on the fly for batch generation
1495
+ position_ids = attention_mask.long().cumsum(-1) - 1
1496
+ position_ids.masked_fill_(attention_mask == 0, 1)
1497
+ if past_key_values:
1498
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1499
+
1500
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1501
+ if inputs_embeds is not None and past_key_values is None:
1502
+ model_inputs = {"inputs_embeds": inputs_embeds}
1503
+ else:
1504
+ model_inputs = {"input_ids": input_ids}
1505
+
1506
+ image_hidden_states = kwargs.get("image_hidden_states", None)
1507
+ if image_hidden_states is not None:
1508
+ pixel_values = None
1509
+ else:
1510
+ pixel_values = kwargs.get("pixel_values", None)
1511
+ model_inputs.update(
1512
+ {
1513
+ "position_ids": position_ids,
1514
+ "past_key_values": past_key_values,
1515
+ "use_cache": kwargs.get("use_cache"),
1516
+ "attention_mask": attention_mask,
1517
+ "pixel_values": pixel_values,
1518
+ "image_hidden_states": image_hidden_states,
1519
+ }
1520
+ )
1521
+ return model_inputs
1522
+
1523
+ @staticmethod
1524
+ def _expand_inputs_for_generation(
1525
+ *args,
1526
+ **model_kwargs,
1527
+ ):
1528
+ return expand_inputs_for_generation(*args, **model_kwargs)
1529
+
1530
+ @staticmethod
1531
+ def _update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder):
1532
+ return update_model_kwargs_for_generation(outputs, model_kwargs)
1533
+
1534
+ @staticmethod
1535
+ def _reorder_cache(past_key_values, beam_idx):
1536
+ reordered_past = ()
1537
+ for layer_past in past_key_values:
1538
+ reordered_past += (
1539
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1540
+ )
1541
+ return reordered_past
1542
+
perceiver.py ADDED
@@ -0,0 +1,585 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ import math
22
+ from typing import Optional, Tuple
23
+
24
+ import torch
25
+ import torch.nn as nn
26
+ import torch.nn.functional as F
27
+ from einops import repeat
28
+ from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
29
+ from transformers.utils import is_flash_attn_2_available
30
+ from transformers.utils import logging
31
+
32
+ from .common import MLP, RMSNorm
33
+
34
+
35
+ if is_flash_attn_2_available():
36
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
37
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+
42
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
43
+ def _get_unpad_data(attention_mask):
44
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
45
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
46
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
47
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
48
+ return (
49
+ indices,
50
+ cu_seqlens,
51
+ max_seqlen_in_batch,
52
+ )
53
+
54
+
55
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
56
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
57
+ """
58
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
59
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
60
+ """
61
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
62
+ if n_rep == 1:
63
+ return hidden_states
64
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
65
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
66
+
67
+
68
+ class PerceiverAttention(nn.Module):
69
+ def __init__(self, config) -> None:
70
+ """Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`"""
71
+ super().__init__()
72
+
73
+ self.config = config
74
+
75
+ self.hidden_size = config.hidden_size
76
+ self.num_heads = config.perceiver_config.resampler_n_heads
77
+ self.head_dim = config.perceiver_config.resampler_head_dim
78
+ self.num_key_value_heads = config.perceiver_config.num_key_value_heads
79
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
80
+ self.qk_layer_norms = config.perceiver_config.qk_layer_norms_perceiver
81
+ self.attention_dropout = config.perceiver_config.attention_dropout
82
+
83
+ if self.qk_layer_norms:
84
+ self.q_layer_norm = RMSNorm(self.head_dim)
85
+ self.k_layer_norm = RMSNorm(self.head_dim)
86
+
87
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
88
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
89
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
90
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
91
+
92
+ self.is_causal = False
93
+
94
+ def forward(
95
+ self,
96
+ latents: torch.Tensor,
97
+ context: torch.Tensor,
98
+ attention_mask: Optional[torch.Tensor] = None,
99
+ position_ids: Optional[torch.LongTensor] = None,
100
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
101
+ output_attentions: bool = False,
102
+ use_cache: bool = False,
103
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
104
+ """
105
+ Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension!
106
+ :param context: Tensor of shape [bsz, seq, embed_dim] representing long-form context to resample.
107
+ :param latents: Tensor of shape [bsz, n_latents, embed_dim] representing fixed length latents to compress to.
108
+ :return: Tensor of shape [bsz, n_latents, embed_dim] representing attention over latents w/ cross from context.
109
+ """
110
+ bsz, q_len, _ = latents.size()
111
+ kv_seq_len = q_len + context.size()[1]
112
+
113
+ query_states = self.q_proj(latents).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
114
+ key_states = (
115
+ self.k_proj(torch.cat([context, latents], dim=-2))
116
+ .view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim)
117
+ .transpose(1, 2)
118
+ )
119
+ value_states = (
120
+ self.v_proj(torch.cat([context, latents], dim=-2))
121
+ .view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim)
122
+ .transpose(1, 2)
123
+ )
124
+
125
+ kv_seq_len = key_states.shape[-2]
126
+ if past_key_value is not None:
127
+ kv_seq_len += past_key_value[0].shape[-2]
128
+ # cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
129
+ # query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
130
+
131
+ if past_key_value is not None:
132
+ # reuse k, v, self_attention
133
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
134
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
135
+
136
+ past_key_value = (key_states, value_states) if use_cache else None
137
+
138
+ if self.qk_layer_norms:
139
+ query_states = self.q_layer_norm(query_states)
140
+ key_states = self.k_layer_norm(key_states)
141
+
142
+ # repeat k/v heads if n_kv_heads < n_heads
143
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
144
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
145
+
146
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
147
+
148
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
149
+ raise ValueError(
150
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
151
+ f" {attn_weights.size()}"
152
+ )
153
+
154
+ if attention_mask is not None:
155
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
156
+ raise ValueError(
157
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
158
+ )
159
+
160
+ attn_weights = attn_weights + attention_mask
161
+
162
+ # upcast attention to fp32
163
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
164
+ attn_output = torch.matmul(attn_weights, value_states)
165
+
166
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
167
+ raise ValueError(
168
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
169
+ f" {attn_output.size()}"
170
+ )
171
+
172
+ attn_output = attn_output.transpose(1, 2).contiguous()
173
+ attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
174
+
175
+ attn_output = self.o_proj(attn_output)
176
+
177
+ if not output_attentions:
178
+ attn_weights = None
179
+
180
+ return attn_output, attn_weights, past_key_value
181
+
182
+
183
+ class PerceiverFlashAttention2(PerceiverAttention):
184
+ """
185
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
186
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
187
+ flash attention and deal with padding tokens in case the input contains any of them.
188
+ """
189
+
190
+ def __init__(self, *args, **kwargs):
191
+ super().__init__(*args, **kwargs)
192
+
193
+ def forward(
194
+ self,
195
+ latents: torch.Tensor,
196
+ context: torch.Tensor,
197
+ attention_mask: Optional[torch.LongTensor] = None,
198
+ position_ids: Optional[torch.LongTensor] = None,
199
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
200
+ output_attentions: bool = False,
201
+ use_cache: bool = False,
202
+ **kwargs,
203
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
204
+ bsz, q_len, _ = latents.size()
205
+ kv_seq_len = q_len + context.size()[1]
206
+
207
+ # Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn!
208
+ # Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents`
209
+ query_states = self.q_proj(latents)
210
+ key_states = self.k_proj(torch.cat([context, latents], dim=-2))
211
+ value_states = self.v_proj(torch.cat([context, latents], dim=-2))
212
+
213
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
214
+ key_states = key_states.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
215
+ value_states = value_states.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
216
+
217
+ kv_seq_len = key_states.shape[-2]
218
+ if past_key_value is not None:
219
+ kv_seq_len += past_key_value[0].shape[-2]
220
+
221
+ if past_key_value is not None:
222
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
223
+ if hasattr(self.config, "sliding_window") and kv_seq_len > self.config.sliding_window:
224
+ slicing_tokens = kv_seq_len - self.config.sliding_window
225
+
226
+ past_key = past_key_value[0]
227
+ past_value = past_key_value[1]
228
+
229
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
230
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
231
+
232
+ if past_key.shape[-2] != self.config.sliding_window - 1:
233
+ raise ValueError(
234
+ "past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1,"
235
+ f" head_dim`), got {past_key.shape}"
236
+ )
237
+
238
+ past_key_value = (past_key, past_value)
239
+
240
+ if attention_mask is not None:
241
+ attention_mask = attention_mask[:, slicing_tokens:]
242
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
243
+
244
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
245
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
246
+
247
+ past_key_value = (key_states, value_states) if use_cache else None
248
+
249
+ # repeat k/v heads if n_kv_heads < n_heads
250
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
251
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
252
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
253
+
254
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
255
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
256
+ # cast them back in float16 just to be sure everything works as expected.
257
+ input_dtype = query_states.dtype
258
+ if input_dtype == torch.float32:
259
+ # Handle the case where the model is quantized
260
+ if hasattr(self.config, "_pre_quantization_dtype"):
261
+ target_dtype = self.config._pre_quantization_dtype
262
+ else:
263
+ target_dtype = self.q_proj.weight.dtype
264
+
265
+ logger.warning_once(
266
+ "The input hidden states seems to be silently casted in float32, this might be related to the fact"
267
+ " you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
268
+ f" {target_dtype}."
269
+ )
270
+
271
+ query_states = query_states.to(target_dtype)
272
+ key_states = key_states.to(target_dtype)
273
+ value_states = value_states.to(target_dtype)
274
+
275
+ # Reashape to the expected shape for Flash Attention
276
+ query_states = query_states.transpose(1, 2)
277
+ key_states = key_states.transpose(1, 2)
278
+ value_states = value_states.transpose(1, 2)
279
+
280
+ attn_output = self._flash_attention_forward(
281
+ query_states,
282
+ key_states,
283
+ value_states,
284
+ attention_mask,
285
+ q_len,
286
+ dropout=dropout_rate,
287
+ use_sliding_windows=False,
288
+ )
289
+
290
+ attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim).contiguous()
291
+ attn_output = self.o_proj(attn_output)
292
+
293
+ if not output_attentions:
294
+ attn_weights = None
295
+
296
+ return attn_output, attn_weights, past_key_value
297
+
298
+ def _flash_attention_forward(
299
+ self,
300
+ query_states,
301
+ key_states,
302
+ value_states,
303
+ attention_mask,
304
+ query_length,
305
+ dropout=0.0,
306
+ softmax_scale=None,
307
+ use_sliding_windows=False,
308
+ ):
309
+ """
310
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
311
+ first unpad the input, then computes the attention scores and pad the final attention scores.
312
+
313
+ Args:
314
+ query_states (`torch.Tensor`):
315
+ Input query states to be passed to Flash Attention API
316
+ key_states (`torch.Tensor`):
317
+ Input key states to be passed to Flash Attention API
318
+ value_states (`torch.Tensor`):
319
+ Input value states to be passed to Flash Attention API
320
+ attention_mask (`torch.Tensor`):
321
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
322
+ position of padding tokens and 1 for the position of non-padding tokens.
323
+ dropout (`int`, *optional*):
324
+ Attention dropout
325
+ softmax_scale (`float`, *optional*):
326
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
327
+ use_sliding_windows (`bool`, *optional*):
328
+ Whether to activate sliding window attention.
329
+ """
330
+ # Contains at least one padding token in the sequence
331
+ if attention_mask is not None:
332
+ batch_size = query_states.shape[0]
333
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
334
+ query_states, key_states, value_states, attention_mask, query_length
335
+ )
336
+
337
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
338
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
339
+
340
+ if not use_sliding_windows:
341
+ attn_output_unpad = flash_attn_varlen_func(
342
+ query_states,
343
+ key_states,
344
+ value_states,
345
+ cu_seqlens_q=cu_seqlens_q,
346
+ cu_seqlens_k=cu_seqlens_k,
347
+ max_seqlen_q=max_seqlen_in_batch_q,
348
+ max_seqlen_k=max_seqlen_in_batch_k,
349
+ dropout_p=dropout,
350
+ softmax_scale=softmax_scale,
351
+ causal=self.is_causal,
352
+ )
353
+ else:
354
+ attn_output_unpad = flash_attn_varlen_func(
355
+ query_states,
356
+ key_states,
357
+ value_states,
358
+ cu_seqlens_q=cu_seqlens_q,
359
+ cu_seqlens_k=cu_seqlens_k,
360
+ max_seqlen_q=max_seqlen_in_batch_q,
361
+ max_seqlen_k=max_seqlen_in_batch_k,
362
+ dropout_p=dropout,
363
+ softmax_scale=softmax_scale,
364
+ causal=self.is_causal,
365
+ window_size=(self.config.sliding_window, self.config.sliding_window),
366
+ )
367
+
368
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
369
+ else:
370
+ if not use_sliding_windows:
371
+ attn_output = flash_attn_func(
372
+ query_states,
373
+ key_states,
374
+ value_states,
375
+ dropout,
376
+ softmax_scale=softmax_scale,
377
+ causal=self.is_causal,
378
+ )
379
+ else:
380
+ attn_output = flash_attn_func(
381
+ query_states,
382
+ key_states,
383
+ value_states,
384
+ dropout,
385
+ softmax_scale=softmax_scale,
386
+ causal=self.is_causal,
387
+ window_size=(self.config.sliding_window, self.config.sliding_window),
388
+ )
389
+
390
+ return attn_output
391
+
392
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
393
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
394
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
395
+
396
+ key_layer = index_first_axis(
397
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
398
+ )
399
+ value_layer = index_first_axis(
400
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
401
+ )
402
+ if query_length == kv_seq_len:
403
+ query_layer = index_first_axis(
404
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
405
+ )
406
+ cu_seqlens_q = cu_seqlens_k
407
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
408
+ indices_q = indices_k
409
+ elif query_length == 1:
410
+ max_seqlen_in_batch_q = 1
411
+ cu_seqlens_q = torch.arange(
412
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
413
+ ) # There is a memcpy here, that is very bad.
414
+ indices_q = cu_seqlens_q[:-1]
415
+ query_layer = query_layer.squeeze(1)
416
+ else:
417
+ # The -q_len: slice assumes left padding.
418
+ attention_mask = attention_mask[:, -query_length:]
419
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
420
+
421
+ return (
422
+ query_layer,
423
+ key_layer,
424
+ value_layer,
425
+ indices_q,
426
+ (cu_seqlens_q, cu_seqlens_k),
427
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
428
+ )
429
+
430
+
431
+ class PerceiverLayer(nn.Module):
432
+ def __init__(self, config):
433
+ super().__init__()
434
+ self.config = config
435
+ self.hidden_size = config.hidden_size
436
+ self.hidden_act = config.perceiver_config.hidden_act
437
+ self.n_latents = config.perceiver_config.resampler_n_latents
438
+ self.depth = config.perceiver_config.resampler_depth
439
+ self.rms_norm_eps = config.rms_norm_eps
440
+ self.intermediate_size = self.hidden_size * 4
441
+
442
+ self.input_latents_norm = RMSNorm(self.hidden_size, eps=self.rms_norm_eps)
443
+ self.input_context_norm = RMSNorm(self.hidden_size, eps=self.rms_norm_eps)
444
+ self.self_attn = (
445
+ PerceiverAttention(config)
446
+ if not getattr(config, "_flash_attn_2_enabled", False)
447
+ else PerceiverFlashAttention2(config)
448
+ )
449
+ self.post_attention_layernorm = RMSNorm(self.hidden_size, eps=self.rms_norm_eps)
450
+ self.mlp = MLP(
451
+ activation=self.hidden_act,
452
+ input_size=self.hidden_size,
453
+ intermediate_size=self.intermediate_size,
454
+ output_size=self.hidden_size,
455
+ )
456
+
457
+ def forward(
458
+ self,
459
+ latents: torch.Tensor,
460
+ context: torch.Tensor,
461
+ attention_mask: Optional[torch.Tensor] = None,
462
+ position_ids: Optional[torch.LongTensor] = None,
463
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
464
+ output_attentions: Optional[bool] = False,
465
+ use_cache: Optional[bool] = False,
466
+ **kwargs,
467
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
468
+ """
469
+ Args:
470
+ latents (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
471
+ context (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
472
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
473
+ `(batch, sequence_length)` where padding elements are indicated by 0.
474
+ output_attentions (`bool`, *optional*):
475
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
476
+ returned tensors for more detail.
477
+ use_cache (`bool`, *optional*):
478
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
479
+ (see `past_key_values`).
480
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
481
+ """
482
+ residual = latents
483
+
484
+ latents = self.input_latents_norm(latents)
485
+ context = self.input_context_norm(context)
486
+
487
+ if attention_mask is None:
488
+ attention_mask = torch.ones(
489
+ size=(context.size(0), context.size(1)),
490
+ dtype=torch.bool,
491
+ device=context.device,
492
+ )
493
+ attention_mask = torch.cat(
494
+ [
495
+ attention_mask,
496
+ torch.ones(
497
+ size=(attention_mask.size(0), latents.size(1)),
498
+ dtype=attention_mask.dtype,
499
+ device=attention_mask.device,
500
+ ),
501
+ ],
502
+ dim=-1,
503
+ )
504
+ latents, self_attn_weights, present_key_value = self.self_attn(
505
+ latents=latents,
506
+ context=context,
507
+ attention_mask=(
508
+ _prepare_4d_attention_mask(attention_mask, latents.dtype, tgt_len=self.n_latents)
509
+ if not self.config._flash_attn_2_enabled
510
+ else attention_mask
511
+ ),
512
+ )
513
+ latents = residual + latents
514
+ residual = latents
515
+
516
+ latents = self.post_attention_layernorm(latents)
517
+ latents = self.mlp(latents)
518
+ latents = residual + latents
519
+
520
+ outputs = (latents,)
521
+
522
+ if output_attentions:
523
+ outputs += (self_attn_weights,)
524
+
525
+ if use_cache:
526
+ outputs += (present_key_value,)
527
+
528
+ return outputs
529
+
530
+
531
+ class PerceiverResampler(nn.Module):
532
+ def __init__(
533
+ self,
534
+ config,
535
+ ) -> None:
536
+ """
537
+ Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or
538
+ MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then
539
+ returns a Tensor of shape [bsz, n_latents, embed_dim].
540
+ :param embed_dim: Dimensionality of embeddings being fed to the Perceiver Resampler (also dimensionality of
541
+ latent embeddings *returned* by the Perceiver Resampler. Could be e.g., VIT embed_dim, ResNet
542
+ pool dim, and so on.
543
+ :param depth: Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
544
+ :param n_heads: Number of heads in each Transformer block (for multi-headed self-attention).
545
+ :param head_dim: Dimensionality of each head projection in the Transformer block.
546
+ :param n_latents: Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
547
+ """
548
+ super().__init__()
549
+ self.config = config
550
+ self.hidden_size = config.hidden_size
551
+ self.hidden_act = config.perceiver_config.hidden_act
552
+ self.n_latents = config.perceiver_config.resampler_n_latents
553
+ self.depth = config.perceiver_config.resampler_depth
554
+ self.rms_norm_eps = config.rms_norm_eps
555
+
556
+ # Create Latents for Perceiver
557
+ self.latents = nn.Parameter(torch.ones(self.n_latents, self.hidden_size))
558
+
559
+ # Create Transformer Blocks
560
+ self.layers = nn.ModuleList([PerceiverLayer(config) for _ in range(self.depth)])
561
+ self.norm = RMSNorm(self.hidden_size, eps=self.rms_norm_eps)
562
+
563
+ def forward(
564
+ self,
565
+ context: torch.Tensor,
566
+ attention_mask: Optional[torch.Tensor] = None,
567
+ ) -> torch.Tensor:
568
+ latents = repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0])
569
+
570
+ for perceiver_layer in self.layers:
571
+ layer_outputs = perceiver_layer(
572
+ latents,
573
+ context,
574
+ attention_mask=attention_mask,
575
+ position_ids=None,
576
+ past_key_value=None,
577
+ output_attentions=False,
578
+ use_cache=False,
579
+ )
580
+
581
+ latents = layer_outputs[0]
582
+
583
+ latents = self.norm(latents)
584
+
585
+ return latents
preprocessor_config.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "IdeficsProcessor",
4
+ "AutoImageProcessor": "IdeficsImageProcessor"
5
+ },
6
+ "image_num_channels": 3,
7
+ "image_mean": [
8
+ 0.5,
9
+ 0.5,
10
+ 0.5
11
+ ],
12
+ "image_processor_type": "IdeficsImageProcessor",
13
+ "image_size": 980,
14
+ "image_std": [
15
+ 0.5,
16
+ 0.5,
17
+ 0.5
18
+ ],
19
+ "processor_class": "IdeficsProcessor"
20
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<fake_token_around_image>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "<image>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ }
17
+ ],
18
+ "bos_token": {
19
+ "content": "<s>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "eos_token": {
26
+ "content": "</s>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "pad_token": {
33
+ "content": "<unk>",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ },
39
+ "unk_token": {
40
+ "content": "<unk>",
41
+ "lstrip": false,
42
+ "normalized": false,
43
+ "rstrip": false,
44
+ "single_word": false
45
+ }
46
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "<fake_token_around_image>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32001": {
38
+ "content": "<image>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ }
45
+ },
46
+ "additional_special_tokens": [
47
+ "<fake_token_around_image>",
48
+ "<image>"
49
+ ],
50
+ "bos_token": "<s>",
51
+ "clean_up_tokenization_spaces": false,
52
+ "eos_token": "</s>",
53
+ "legacy": false,
54
+ "model_max_length": 1000000000000000019884624838656,
55
+ "pad_token": "<unk>",
56
+ "sp_model_kwargs": {},
57
+ "spaces_between_special_tokens": false,
58
+ "tokenizer_class": "LlamaTokenizer",
59
+ "unk_token": "<unk>",
60
+ "use_default_system_prompt": true
61
+ }
vision.py ADDED
@@ -0,0 +1,634 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Google AI and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ A simplified copy of https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit which is a siglip modified to allow variable size and image ratio preserving images. """
16
+
17
+
18
+ from dataclasses import dataclass
19
+ from typing import Any, Optional, Tuple, Union
20
+
21
+ import torch
22
+ import torch.nn.functional as F
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+ from transformers.activations import ACT2FN
26
+ from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
27
+ from transformers.modeling_outputs import BaseModelOutput
28
+ from transformers.utils import (
29
+ ModelOutput,
30
+ is_flash_attn_2_available,
31
+ logging,
32
+ )
33
+ from .configuration_idefics2 import Idefics2VisionConfig
34
+
35
+
36
+ logger = logging.get_logger(__name__)
37
+
38
+
39
+ if is_flash_attn_2_available():
40
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
41
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
42
+
43
+
44
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
45
+ def _get_unpad_data(attention_mask):
46
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
47
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
48
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
49
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
50
+ return (
51
+ indices,
52
+ cu_seqlens,
53
+ max_seqlen_in_batch,
54
+ )
55
+
56
+
57
+ class SiglipVisionEmbeddings(nn.Module):
58
+ def __init__(self, config: Idefics2VisionConfig):
59
+ super().__init__()
60
+ self.config = config
61
+ self.embed_dim = config.hidden_size
62
+ self.image_size = config.image_size
63
+ self.patch_size = config.patch_size
64
+
65
+ self.patch_embedding = nn.Conv2d(
66
+ in_channels=config.num_channels,
67
+ out_channels=self.embed_dim,
68
+ kernel_size=self.patch_size,
69
+ stride=self.patch_size,
70
+ padding="valid",
71
+ )
72
+
73
+ self.num_patches_per_side = self.image_size // self.patch_size
74
+ self.num_patches = self.num_patches_per_side**2
75
+ self.num_positions = self.num_patches
76
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
77
+
78
+ def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor) -> torch.Tensor:
79
+ batch_size = pixel_values.size(0)
80
+
81
+ patch_embeds = self.patch_embedding(pixel_values)
82
+ embeddings = patch_embeds.flatten(2).transpose(1, 2)
83
+
84
+ max_im_h, max_im_w = pixel_values.size(2), pixel_values.size(3)
85
+ max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size
86
+ boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side)
87
+ position_ids = torch.full(
88
+ size=(
89
+ batch_size,
90
+ max_nb_patches_h * max_nb_patches_w,
91
+ ),
92
+ fill_value=0,
93
+ )
94
+
95
+ for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
96
+ nb_patches_h = p_attn_mask[:, 0].sum()
97
+ nb_patches_w = p_attn_mask[0].sum()
98
+
99
+ fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
100
+ fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
101
+
102
+ bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
103
+ bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
104
+
105
+ pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten()
106
+ position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
107
+
108
+ position_ids = position_ids.to(self.position_embedding.weight.device)
109
+
110
+ embeddings = embeddings + self.position_embedding(position_ids)
111
+ return embeddings
112
+
113
+
114
+ class SiglipAttention(nn.Module):
115
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
116
+
117
+ # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
118
+ def __init__(self, config):
119
+ super().__init__()
120
+ self.config = config
121
+ self.embed_dim = config.hidden_size
122
+ self.num_heads = config.num_attention_heads
123
+ self.head_dim = self.embed_dim // self.num_heads
124
+ if self.head_dim * self.num_heads != self.embed_dim:
125
+ raise ValueError(
126
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
127
+ f" {self.num_heads})."
128
+ )
129
+ self.scale = self.head_dim**-0.5
130
+ self.dropout = config.attention_dropout
131
+
132
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
133
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
134
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
135
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
136
+
137
+ def forward(
138
+ self,
139
+ hidden_states: torch.Tensor,
140
+ attention_mask: Optional[torch.Tensor] = None,
141
+ output_attentions: Optional[bool] = False,
142
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
143
+ """Input shape: Batch x Time x Channel"""
144
+
145
+ batch_size, q_len, _ = hidden_states.size()
146
+
147
+ query_states = self.q_proj(hidden_states)
148
+ key_states = self.k_proj(hidden_states)
149
+ value_states = self.v_proj(hidden_states)
150
+
151
+ query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
152
+ key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
153
+ value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
154
+
155
+ k_v_seq_len = key_states.shape[-2]
156
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
157
+
158
+ if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
159
+ raise ValueError(
160
+ f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
161
+ f" {attn_weights.size()}"
162
+ )
163
+
164
+ if attention_mask is not None:
165
+ if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
166
+ raise ValueError(
167
+ f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
168
+ )
169
+ attn_weights = attn_weights + attention_mask
170
+
171
+ # upcast attention to fp32
172
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
173
+ attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
174
+ attn_output = torch.matmul(attn_weights, value_states)
175
+
176
+ if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
177
+ raise ValueError(
178
+ f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
179
+ f" {attn_output.size()}"
180
+ )
181
+
182
+ attn_output = attn_output.transpose(1, 2).contiguous()
183
+ attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
184
+
185
+ attn_output = self.out_proj(attn_output)
186
+
187
+ return attn_output, attn_weights
188
+
189
+
190
+ class SiglipFlashAttention2(SiglipAttention):
191
+ """
192
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
193
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
194
+ flash attention and deal with padding tokens in case the input contains any of them.
195
+ """
196
+
197
+ def __init__(self, *args, **kwargs):
198
+ super().__init__(*args, **kwargs)
199
+ self.is_causal = False # Hack to make sure we don't use a causal mask
200
+
201
+ def forward(
202
+ self,
203
+ hidden_states: torch.Tensor,
204
+ attention_mask: Optional[torch.LongTensor] = None,
205
+ position_ids: Optional[torch.LongTensor] = None,
206
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
207
+ output_attentions: bool = False,
208
+ use_cache: bool = False,
209
+ **kwargs,
210
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
211
+ output_attentions = False
212
+
213
+ bsz, q_len, _ = hidden_states.size()
214
+
215
+ query_states = self.q_proj(hidden_states)
216
+ key_states = self.k_proj(hidden_states)
217
+ value_states = self.v_proj(hidden_states)
218
+
219
+ # Flash attention requires the input to have the shape
220
+ # batch_size x seq_length x head_dim x hidden_dim
221
+ # therefore we just need to keep the original shape
222
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
223
+ key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
224
+ value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
225
+
226
+ kv_seq_len = key_states.shape[-2]
227
+ if past_key_value is not None:
228
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
229
+ # cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
230
+ # query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
231
+
232
+ # if past_key_value is not None:
233
+ # cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
234
+ # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
235
+
236
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
237
+ # to be able to avoid many of these transpose/reshape/view.
238
+ query_states = query_states.transpose(1, 2)
239
+ key_states = key_states.transpose(1, 2)
240
+ value_states = value_states.transpose(1, 2)
241
+
242
+ dropout_rate = self.dropout if self.training else 0.0
243
+
244
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
245
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
246
+ # cast them back in the correct dtype just to be sure everything works as expected.
247
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
248
+ # in fp32. (LlamaRMSNorm handles it correctly)
249
+
250
+ input_dtype = query_states.dtype
251
+ if input_dtype == torch.float32:
252
+ if torch.is_autocast_enabled():
253
+ target_dtype = torch.get_autocast_gpu_dtype()
254
+ # Handle the case where the model is quantized
255
+ elif hasattr(self.config, "_pre_quantization_dtype"):
256
+ target_dtype = self.config._pre_quantization_dtype
257
+ else:
258
+ target_dtype = self.q_proj.weight.dtype
259
+
260
+ logger.warning_once(
261
+ "The input hidden states seems to be silently casted in float32, this might be related to the fact"
262
+ " you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
263
+ f" {target_dtype}."
264
+ )
265
+
266
+ query_states = query_states.to(target_dtype)
267
+ key_states = key_states.to(target_dtype)
268
+ value_states = value_states.to(target_dtype)
269
+
270
+ attn_output = self._flash_attention_forward(
271
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
272
+ )
273
+
274
+ attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
275
+ attn_output = self.out_proj(attn_output)
276
+
277
+ if not output_attentions:
278
+ attn_weights = None
279
+
280
+ return attn_output, attn_weights
281
+
282
+ def _flash_attention_forward(
283
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
284
+ ):
285
+ """
286
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
287
+ first unpad the input, then computes the attention scores and pad the final attention scores.
288
+
289
+ Args:
290
+ query_states (`torch.Tensor`):
291
+ Input query states to be passed to Flash Attention API
292
+ key_states (`torch.Tensor`):
293
+ Input key states to be passed to Flash Attention API
294
+ value_states (`torch.Tensor`):
295
+ Input value states to be passed to Flash Attention API
296
+ attention_mask (`torch.Tensor`):
297
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
298
+ position of padding tokens and 1 for the position of non-padding tokens.
299
+ dropout (`int`, *optional*):
300
+ Attention dropout
301
+ softmax_scale (`float`, *optional*):
302
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
303
+ """
304
+
305
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
306
+ causal = self.is_causal and query_length != 1
307
+
308
+ # Contains at least one padding token in the sequence
309
+ if attention_mask is not None:
310
+ batch_size = query_states.shape[0]
311
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
312
+ query_states, key_states, value_states, attention_mask, query_length
313
+ )
314
+
315
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
316
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
317
+
318
+ attn_output_unpad = flash_attn_varlen_func(
319
+ query_states,
320
+ key_states,
321
+ value_states,
322
+ cu_seqlens_q=cu_seqlens_q,
323
+ cu_seqlens_k=cu_seqlens_k,
324
+ max_seqlen_q=max_seqlen_in_batch_q,
325
+ max_seqlen_k=max_seqlen_in_batch_k,
326
+ dropout_p=dropout,
327
+ softmax_scale=softmax_scale,
328
+ causal=causal,
329
+ )
330
+
331
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
332
+ else:
333
+ attn_output = flash_attn_func(
334
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
335
+ )
336
+
337
+ return attn_output
338
+
339
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
340
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
341
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
342
+
343
+ key_layer = index_first_axis(
344
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
345
+ )
346
+ value_layer = index_first_axis(
347
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
348
+ )
349
+ if query_length == kv_seq_len:
350
+ query_layer = index_first_axis(
351
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
352
+ )
353
+ cu_seqlens_q = cu_seqlens_k
354
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
355
+ indices_q = indices_k
356
+ elif query_length == 1:
357
+ max_seqlen_in_batch_q = 1
358
+ cu_seqlens_q = torch.arange(
359
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
360
+ ) # There is a memcpy here, that is very bad.
361
+ indices_q = cu_seqlens_q[:-1]
362
+ query_layer = query_layer.squeeze(1)
363
+ else:
364
+ # The -q_len: slice assumes left padding.
365
+ attention_mask = attention_mask[:, -query_length:]
366
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
367
+
368
+ return (
369
+ query_layer,
370
+ key_layer,
371
+ value_layer,
372
+ indices_q,
373
+ (cu_seqlens_q, cu_seqlens_k),
374
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
375
+ )
376
+
377
+
378
+ # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
379
+ class SiglipMLP(nn.Module):
380
+ def __init__(self, config):
381
+ super().__init__()
382
+ self.config = config
383
+ self.activation_fn = ACT2FN[config.hidden_act]
384
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
385
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
386
+
387
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
388
+ hidden_states = self.fc1(hidden_states)
389
+ hidden_states = self.activation_fn(hidden_states)
390
+ hidden_states = self.fc2(hidden_states)
391
+ return hidden_states
392
+
393
+
394
+ # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
395
+ class SiglipEncoderLayer(nn.Module):
396
+ def __init__(self, config: Idefics2VisionConfig):
397
+ super().__init__()
398
+ self.embed_dim = config.hidden_size
399
+ self.self_attn = (
400
+ SiglipAttention(config)
401
+ if not getattr(config, "_flash_attn_2_enabled", False)
402
+ else SiglipFlashAttention2(config)
403
+ )
404
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
405
+ self.mlp = SiglipMLP(config)
406
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
407
+
408
+ def forward(
409
+ self,
410
+ hidden_states: torch.Tensor,
411
+ attention_mask: torch.Tensor,
412
+ output_attentions: Optional[bool] = False,
413
+ ) -> Tuple[torch.FloatTensor]:
414
+ """
415
+ Args:
416
+ hidden_states (`torch.FloatTensor`):
417
+ Input to the layer of shape `(batch, seq_len, embed_dim)`.
418
+ attention_mask (`torch.FloatTensor`):
419
+ Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
420
+ output_attentions (`bool`, *optional*, defaults to `False`):
421
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
422
+ returned tensors for more detail.
423
+ """
424
+ residual = hidden_states
425
+
426
+ hidden_states = self.layer_norm1(hidden_states)
427
+ hidden_states, attn_weights = self.self_attn(
428
+ hidden_states=hidden_states,
429
+ attention_mask=attention_mask,
430
+ output_attentions=output_attentions,
431
+ )
432
+ hidden_states = residual + hidden_states
433
+
434
+ residual = hidden_states
435
+ hidden_states = self.layer_norm2(hidden_states)
436
+ hidden_states = self.mlp(hidden_states)
437
+ hidden_states = residual + hidden_states
438
+
439
+ outputs = (hidden_states,)
440
+
441
+ if output_attentions:
442
+ outputs += (attn_weights,)
443
+
444
+ return outputs
445
+
446
+
447
+ # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
448
+ class SiglipEncoder(nn.Module):
449
+ """
450
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
451
+ [`SiglipEncoderLayer`].
452
+
453
+ Args:
454
+ config: Idefics2VisionConfig
455
+ """
456
+
457
+ def __init__(self, config: Idefics2VisionConfig):
458
+ super().__init__()
459
+ self.config = config
460
+ self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
461
+ self.gradient_checkpointing = False
462
+
463
+ def forward(
464
+ self,
465
+ inputs_embeds,
466
+ attention_mask: Optional[torch.Tensor] = None,
467
+ output_attentions: Optional[bool] = None,
468
+ output_hidden_states: Optional[bool] = None,
469
+ return_dict: Optional[bool] = None,
470
+ ) -> Union[Tuple, BaseModelOutput]:
471
+ r"""
472
+ Args:
473
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
474
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
475
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
476
+ than the model's internal embedding lookup matrix.
477
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
478
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
479
+
480
+ - 1 for tokens that are **not masked**,
481
+ - 0 for tokens that are **masked**.
482
+
483
+ [What are attention masks?](../glossary#attention-mask)
484
+ output_attentions (`bool`, *optional*):
485
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
486
+ returned tensors for more detail.
487
+ output_hidden_states (`bool`, *optional*):
488
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
489
+ for more detail.
490
+ return_dict (`bool`, *optional*):
491
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
492
+ """
493
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
494
+ output_hidden_states = (
495
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
496
+ )
497
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
498
+
499
+ encoder_states = () if output_hidden_states else None
500
+ all_attentions = () if output_attentions else None
501
+
502
+ hidden_states = inputs_embeds
503
+ for encoder_layer in self.layers:
504
+ if output_hidden_states:
505
+ encoder_states = encoder_states + (hidden_states,)
506
+ if self.gradient_checkpointing and self.training:
507
+ layer_outputs = self._gradient_checkpointing_func(
508
+ encoder_layer.__call__,
509
+ hidden_states,
510
+ attention_mask,
511
+ output_attentions,
512
+ )
513
+ else:
514
+ layer_outputs = encoder_layer(
515
+ hidden_states,
516
+ attention_mask,
517
+ output_attentions=output_attentions,
518
+ )
519
+
520
+ hidden_states = layer_outputs[0]
521
+
522
+ if output_attentions:
523
+ all_attentions = all_attentions + (layer_outputs[1],)
524
+
525
+ if output_hidden_states:
526
+ encoder_states = encoder_states + (hidden_states,)
527
+
528
+ if not return_dict:
529
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
530
+ return BaseModelOutput(
531
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
532
+ )
533
+
534
+
535
+ class SiglipVisionTransformer(nn.Module):
536
+ def __init__(self, config: Idefics2VisionConfig):
537
+ super().__init__()
538
+ self.config = config
539
+ embed_dim = config.hidden_size
540
+
541
+ self.embeddings = SiglipVisionEmbeddings(config)
542
+ self.encoder = SiglipEncoder(config)
543
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
544
+
545
+ def forward(
546
+ self,
547
+ pixel_values,
548
+ patch_attention_mask: Optional[torch.BoolTensor] = None,
549
+ output_attentions: Optional[bool] = None,
550
+ output_hidden_states: Optional[bool] = None,
551
+ return_dict: Optional[bool] = None,
552
+ ) -> Union[Tuple, BaseModelOutput]:
553
+ r"""
554
+ Returns:
555
+
556
+ """
557
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
558
+ output_hidden_states = (
559
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
560
+ )
561
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
562
+
563
+ batch_size = pixel_values.size(0)
564
+ if patch_attention_mask is None:
565
+ patch_attention_mask = torch.ones(
566
+ size=(
567
+ batch_size,
568
+ pixel_values.size(2) // self.config.patch_size,
569
+ pixel_values.size(3) // self.config.patch_size,
570
+ ),
571
+ dtype=torch.bool,
572
+ device=pixel_values.device,
573
+ )
574
+
575
+ hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
576
+
577
+ patch_attention_mask = patch_attention_mask.view(batch_size, -1)
578
+ # The call to `_upad_input` in `_flash_attention_forward` is expensive
579
+ # So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence),
580
+ # avoiding passing the attention_mask, which is equivalent to attending to the full sequence
581
+ if not torch.any(~patch_attention_mask):
582
+ attention_mask=None
583
+ else:
584
+ attention_mask = (
585
+ _prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype)
586
+ if not self.config._flash_attn_2_enabled
587
+ else patch_attention_mask
588
+ )
589
+
590
+ encoder_outputs = self.encoder(
591
+ inputs_embeds=hidden_states,
592
+ attention_mask=attention_mask,
593
+ output_attentions=output_attentions,
594
+ output_hidden_states=output_hidden_states,
595
+ return_dict=return_dict,
596
+ )
597
+
598
+ last_hidden_state = encoder_outputs[0]
599
+ last_hidden_state = self.post_layernorm(last_hidden_state)
600
+
601
+ if not return_dict:
602
+ return (last_hidden_state,) + encoder_outputs[1:]
603
+
604
+ return BaseModelOutput(
605
+ last_hidden_state=last_hidden_state,
606
+ hidden_states=encoder_outputs.hidden_states,
607
+ attentions=encoder_outputs.attentions,
608
+ )
609
+
610
+
611
+ class SiglipVisionModel(nn.Module):
612
+ def __init__(self, config: Idefics2VisionConfig):
613
+ super().__init__()
614
+
615
+ self.config = config
616
+ self.vision_model = SiglipVisionTransformer(config)
617
+
618
+ def forward(
619
+ self,
620
+ pixel_values,
621
+ patch_attention_mask: Optional[torch.BoolTensor] = None,
622
+ output_attentions: Optional[bool] = None,
623
+ output_hidden_states: Optional[bool] = None,
624
+ return_dict: Optional[bool] = None,
625
+ ) -> Union[Tuple, BaseModelOutput]:
626
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
627
+
628
+ return self.vision_model(
629
+ pixel_values=pixel_values,
630
+ patch_attention_mask=patch_attention_mask,
631
+ output_attentions=output_attentions,
632
+ output_hidden_states=output_hidden_states,
633
+ return_dict=return_dict,
634
+ )