File size: 12,583 Bytes
87a8563
a4f14d5
8be7551
87a8563
eb6baf0
87a8563
 
 
eb6baf0
 
a4f14d5
87a8563
a4f14d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87a8563
 
8be7551
87a8563
a4f14d5
87a8563
a4f14d5
87a8563
 
 
a4f14d5
 
 
 
 
 
 
 
 
 
 
 
 
 
3d12574
5a6c0cd
8be7551
5a6c0cd
3d12574
5a6c0cd
 
3d12574
 
5a6c0cd
 
8be7551
3d12574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87a8563
 
 
9c6d73c
 
a4f14d5
 
 
 
3d12574
a4f14d5
 
 
 
 
9c6d73c
 
53da47b
9c6d73c
 
 
a4f14d5
 
 
9c6d73c
a4f14d5
 
 
9c6d73c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f14d5
 
 
 
 
 
 
 
87a8563
 
 
 
8be7551
a4f14d5
 
 
 
 
 
 
 
 
 
 
87a8563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed08867
 
 
 
 
 
 
 
 
 
 
 
 
 
e119122
ed08867
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
---
license: mit
base_model: HuggingFaceH4/zephyr-7b-gemma-sft-v0.1
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
datasets:
- argilla/dpo-mix-7k
pipeline_tag: text-generation
model-index:
- name: zephyr-7b-gemma
  results:
  # MT-Bench (taken from model card)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: MT-Bench
      type: unknown
    metrics:
       - type: unknown
         name: score
         value: 7.81
    source:
      url: https://huggingface.co/spaces/lmsys/mt-bench
---

<img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1/resolve/main/thumbnail.png" alt="Zephyr 7B Gemma Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

# Model Card for Zephyr 7B Gemma

Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr 7B Gemma is the third model in the series, and is a fine-tuned version of [`google/gemma-7b`](https://huggingface.co/google/gemma-7b) that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO). You can reproduce the training of this model via the recipe provided in the [Alignment Handbook](https://github.com/huggingface/alignment-handbook).

## Model description

- **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- **Language(s) (NLP):** Primarily English
- **License:** MIT
- **Finetuned from model:** [google/gemma-7b](https://huggingface.co/google/gemma-7b)

### Model Sources

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/huggingface/alignment-handbook
- **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat

## Performance

|                                 Model                                 |MT Bench⬇️|IFEval|
|-----------------------------------------------------------------------|------:|------:|
|[zephyr-7b-gemma-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)|  7.81 |  28.76|
|[zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)  |  7.34 |  43.81|
|[google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it)               |  6.38 |  38.01|



|                                 Model                                 |AGIEval|GPT4All|TruthfulQA|BigBench|Average ⬇️|
|-----------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)  |  37.52|  71.77|     55.26|   39.77|  51.08|
|[zephyr-7b-gemma-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)|  34.22|  66.37|     52.19|   37.10|  47.47|
|[mlabonne/Gemmalpaca-7B](https://huggingface.co/mlabonne/Gemmalpaca-7B)|  21.6 |  40.87|     44.85 |   30.49|  34.45|
|[google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it)        |  21.33|  40.84|     41.70|   30.25|  33.53|


<details><summary>Details of AGIEval, GPT4All, TruthfulQA, BigBench </summary>

### AGIEval
|             Task             |Version| Metric |Value|   |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat              |      0|acc     |21.65|±  |  2.59|
|                              |       |acc_norm|25.20|±  |  2.73|
|agieval_logiqa_en             |      0|acc     |34.72|±  |  1.87|
|                              |       |acc_norm|35.94|±  |  1.88|
|agieval_lsat_ar               |      0|acc     |19.57|±  |  2.62|
|                              |       |acc_norm|21.74|±  |  2.73|
|agieval_lsat_lr               |      0|acc     |30.59|±  |  2.04|
|                              |       |acc_norm|32.55|±  |  2.08|
|agieval_lsat_rc               |      0|acc     |49.07|±  |  3.05|
|                              |       |acc_norm|42.75|±  |  3.02|
|agieval_sat_en                |      0|acc     |54.85|±  |  3.48|
|                              |       |acc_norm|53.40|±  |  3.48|
|agieval_sat_en_without_passage|      0|acc     |37.38|±  |  3.38|
|                              |       |acc_norm|33.98|±  |  3.31|
|agieval_sat_math              |      0|acc     |30.91|±  |  3.12|
|                              |       |acc_norm|28.18|±  |  3.04|

Average: 34.22%

### GPT4All
|    Task     |Version| Metric |Value|   |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge|      0|acc     |49.15|±  |  1.46|
|             |       |acc_norm|52.47|±  |  1.46|
|arc_easy     |      0|acc     |77.44|±  |  0.86|
|             |       |acc_norm|74.75|±  |  0.89|
|boolq        |      1|acc     |79.69|±  |  0.70|
|hellaswag    |      0|acc     |60.59|±  |  0.49|
|             |       |acc_norm|78.00|±  |  0.41|
|openbookqa   |      0|acc     |29.20|±  |  2.04|
|             |       |acc_norm|37.80|±  |  2.17|
|piqa         |      0|acc     |76.82|±  |  0.98|
|             |       |acc_norm|77.80|±  |  0.97|
|winogrande   |      0|acc     |64.09|±  |  1.35|

Average: 66.37%

### TruthfulQA
|    Task     |Version|Metric|Value|   |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc|      1|mc1   |35.74|±  |  1.68|
|             |       |mc2   |52.19|±  |  1.59|

Average: 52.19%

### Bigbench
|                      Task                      |Version|       Metric        |Value|   |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement                       |      0|multiple_choice_grade|53.68|±  |  3.63|
|bigbench_date_understanding                     |      0|multiple_choice_grade|59.89|±  |  2.55|
|bigbench_disambiguation_qa                      |      0|multiple_choice_grade|30.23|±  |  2.86|
|bigbench_geometric_shapes                       |      0|multiple_choice_grade|11.42|±  |  1.68|
|                                                |       |exact_str_match      | 0.00|±  |  0.00|
|bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|28.40|±  |  2.02|
|bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|19.14|±  |  1.49|
|bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|44.67|±  |  2.88|
|bigbench_movie_recommendation                   |      0|multiple_choice_grade|26.80|±  |  1.98|
|bigbench_navigate                               |      0|multiple_choice_grade|50.00|±  |  1.58|
|bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|52.75|±  |  1.12|
|bigbench_ruin_names                             |      0|multiple_choice_grade|33.04|±  |  2.22|
|bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|33.37|±  |  1.49|
|bigbench_snarks                                 |      0|multiple_choice_grade|48.62|±  |  3.73|
|bigbench_sports_understanding                   |      0|multiple_choice_grade|58.11|±  |  1.57|
|bigbench_temporal_sequences                     |      0|multiple_choice_grade|37.20|±  |  1.53|
|bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|20.08|±  |  1.13|
|bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|15.77|±  |  0.87|
|bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|44.67|±  |  2.88|

Average: 37.1%

</details>


## Intended uses & limitations

The model was initially fine-tuned on the [DEITA 10K](https://huggingface.co/datasets/HuggingFaceH4/deita-10k-v0-sft)  dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. 
We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [argilla/dpo-mix-7k](https://huggingface.co/datasets/argilla/dpo-mix-7k) dataset, which contains 7k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities. 

Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:

```python
# pip install transformers>=4.38.2
# pip install accelerate

import torch
from transformers import pipeline

pipe = pipeline(
    "text-generation",
    model="HuggingFaceH4/zephyr-7b-gemma-v0.1",
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
messages = [
    {
        "role": "system",
        "content": "",  # Model not yet trained for follow this
    },
    {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
outputs = pipe(
    messages,
    max_new_tokens=128,
    do_sample=True,
    temperature=0.7,
    top_k=50,
    top_p=0.95,
    stop_sequence="<|im_end|>",
)
print(outputs[0]["generated_text"][-1]["content"])
# It is not possible for a human to eat a helicopter in one sitting, as a
# helicopter is a large and inedible machine. Helicopters are made of metal,
# plastic, and other materials that are not meant to be consumed by humans.
# Eating a helicopter would be extremely dangerous and would likely cause
# serious health problems, including choking, suffocation, and poisoning. It is
# important to only eat food that is safe and intended for human consumption.
```

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

Zephyr 7B Gemma has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition of the corpus was used to train the base model (`google/gemma-7b`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [StarCoder2 model card](https://huggingface.co/bigcode/starcoder2-15b) for an example of this.


## Training and evaluation data


This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-gemma-sft-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-sft-v0.1) on the argilla/dpo-mix-7k dataset.

It achieves the following results on the evaluation set:
- Loss: 0.4695
- Rewards/chosen: -3.3746
- Rewards/rejected: -4.9715
- Rewards/accuracies: 0.7188
- Rewards/margins: 1.5970
- Logps/rejected: -459.4853
- Logps/chosen: -429.9115
- Logits/rejected: 86.4684
- Logits/chosen: 92.8200

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.1923        | 1.9   | 100  | 0.4736          | -3.4575        | -4.9556          | 0.75               | 1.4980          | -459.1662      | -431.5707    | 86.3863         | 92.7360       |


### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.1

## Citation Information

If you find this model useful in your work, please consider citing the Zephyr technical report:

```
@misc{tunstall2023zephyr,
      title={Zephyr: Direct Distillation of LM Alignment}, 
      author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
      year={2023},
      eprint={2310.16944},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
```

You may also wish to cite the creators of this model as well:

```
@misc{zephyr_7b_gemma,
  author = {Lewis Tunstall and Philipp Schmid},
  title = {Zephyr 7B Gemma},
  year = {2024},
  publisher = {Hugging Face},
  journal = {Hugging Face repository},
  howpublished = {\url{https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1}}
}
```