File size: 7,954 Bytes
3dcc536
9763e46
3dcc536
 
 
 
 
 
 
9763e46
3dcc536
 
 
9763e46
3dcc536
9763e46
3dcc536
9763e46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dcc536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
base_model: HuggingFaceH4/starchat2-15b-sft-v0.1
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
- HuggingFaceH4/orca_dpo_pairs
model-index:
- name: starchat2-15b-v0.1
  results: []
---

<img src="https://huggingface.co/HuggingFaceH4/starchat2-15b-v0.1/resolve/main/model_logo.png" alt="StarChat2 15B Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

# Model Card for StarChat2 15B

StarChat is a series of language models that are trained to act as helpful coding assistants. StarChat2 is the latest model in the series, and is a fine-tuned version of [StarCoder2](https://huggingface.co/bigcode/starcoder2-15b) that was trained with SFT and DPO on a mix of synthetic datasets.

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Model type:** A 16B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- **Language(s) (NLP):** Primarily English and 80+ programming languages.
- **License:** BigCode Open RAIL-M v1
- **Finetuned from model:** [bigcode/starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b)

### Model Sources

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/huggingface/alignment-handbook
- **Demo:** https://huggingface.co/spaces/HuggingFaceH4/starchat2-playground


## Intended uses & limitations

The model was fine-tuned on a blend of chat, code, math, and reasoning datasets. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/starchat2-playground) to test its coding capabilities. 

Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:

```python
# pip install 'transformers @ git+https://github.com/huggingface/transformers.git@831bc25d8fdb85768402f772cf65cc3d7872b211'
# pip install accelerate

import torch
from transformers import pipeline

pipe = pipeline(
    "text-generation",
    model="HuggingFaceH4/starchat2-15b-v0.1",
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
messages = [
    {
        "role": "system",
        "content": "You are StarChat2, an expert programming assistant",
    },
    {"role": "user", "content": "Write a simple website in HTML. When a user clicks the button, it shows a random Chuck Norris joke."},
]
outputs = pipe(
    messages,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_k=50,
    top_p=0.95,
    stop_sequence="<|im_end|>",
)
print(outputs[0]["generated_text"][-1]["content"])
```

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

StarChat2 15B has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). 
Models trained primarily on code data will also have a more skewed demographic bias commensurate with the demographics of the GitHub community, for more on this see the [StarCoder2 dataset](https://huggingface.co/datasets/bigcode/the-stack-v2)

Since the base model was pretrained on a large corpus of code, it may produce code snippets that are syntactically valid but semantically incorrect. 
For example, it may produce code that does not compile or that produces incorrect results.  
It may also produce code that is vulnerable to security exploits.  
We have observed the model also has a tendency to produce false URLs which should be carefully inspected before clicking.

StarChat2 15B was fine-tuned from the base model [StarCoder2](https://huggingface.co/bigcode/starcoder2-15b), please refer to its model card's [Limitations Section](https://huggingface.co/bigcode/starcoder2-15b#limitations) for relevant information. 
In particular, the model was evaluated on some categories of gender biases, propensity for toxicity, and risk of suggesting code completions with known security flaws; these evaluations are reported in its [technical report](https://huggingface.co/papers/2402.19173).


## Training details

This model is a fine-tuned version of [starchat2-15b-sft-v0.1](https://huggingface.co/HuggingFaceH4/starchat2-15b-sft-v0.1) on the HuggingFaceH4/ultrafeedback_binarized and the HuggingFaceH4/orca_dpo_pairs datasets.
It achieves the following results on the evaluation set:
- Loss: 0.4347
- Rewards/chosen: -0.9461
- Rewards/rejected: -2.7745
- Rewards/accuracies: 0.7658
- Rewards/margins: 1.8284
- Logps/rejected: -322.1934
- Logps/chosen: -316.1898
- Logits/rejected: -2.3817
- Logits/chosen: -2.3005

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.717         | 0.17  | 100  | 0.6006          | -0.0924        | -0.2899          | 0.6329             | 0.1975          | -272.5022      | -299.1165    | -2.5313         | -2.4191       |
| 0.6273        | 0.35  | 200  | 0.5160          | -0.3994        | -0.9461          | 0.6930             | 0.5467          | -285.6261      | -305.2568    | -2.5281         | -2.4278       |
| 0.5538        | 0.52  | 300  | 0.4781          | -0.6589        | -1.5892          | 0.7247             | 0.9302          | -298.4870      | -310.4470    | -2.4996         | -2.4110       |
| 0.5056        | 0.7   | 400  | 0.4594          | -0.8283        | -2.1332          | 0.7437             | 1.3050          | -309.3687      | -313.8344    | -2.4472         | -2.3644       |
| 0.4983        | 0.87  | 500  | 0.4512          | -0.7758        | -2.2806          | 0.7468             | 1.5049          | -312.3167      | -312.7843    | -2.4223         | -2.3404       |
| 0.4662        | 1.04  | 600  | 0.4431          | -0.7839        | -2.4016          | 0.7658             | 1.6177          | -314.7355      | -312.9465    | -2.4049         | -2.3215       |
| 0.4411        | 1.22  | 700  | 0.4415          | -1.0090        | -2.7582          | 0.7690             | 1.7492          | -321.8679      | -317.4481    | -2.3840         | -2.3016       |
| 0.471         | 1.39  | 800  | 0.4368          | -0.9617        | -2.7445          | 0.7690             | 1.7828          | -321.5930      | -316.5019    | -2.3809         | -2.2991       |
| 0.4485        | 1.57  | 900  | 0.4351          | -0.9490        | -2.7594          | 0.7722             | 1.8103          | -321.8916      | -316.2497    | -2.3815         | -2.3004       |
| 0.4411        | 1.74  | 1000 | 0.4348          | -0.9293        | -2.7469          | 0.7658             | 1.8176          | -321.6409      | -315.8547    | -2.3823         | -2.3011       |
| 0.4499        | 1.92  | 1100 | 0.4348          | -0.9482        | -2.7767          | 0.7658             | 1.8285          | -322.2369      | -316.2320    | -2.3828         | -2.3012       |


### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1