segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0491
  • Mean Iou: 0.3531
  • Mean Accuracy: 0.7062
  • Overall Accuracy: 0.7062
  • Accuracy Unlabeled: nan
  • Accuracy Mass: 0.7062
  • Iou Unlabeled: 0.0
  • Iou Mass: 0.7062

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 45

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Mass Iou Unlabeled Iou Mass
0.3512 1.25 20 0.3893 0.0773 0.1545 0.1545 nan 0.1545 0.0 0.1545
0.2286 2.5 40 0.2047 0.1937 0.3874 0.3874 nan 0.3874 0.0 0.3874
0.1657 3.75 60 0.1423 0.2491 0.4982 0.4982 nan 0.4982 0.0 0.4982
0.1581 5.0 80 0.1117 0.2649 0.5299 0.5299 nan 0.5299 0.0 0.5299
0.1063 6.25 100 0.0943 0.3327 0.6653 0.6653 nan 0.6653 0.0 0.6653
0.0829 7.5 120 0.0782 0.2983 0.5966 0.5966 nan 0.5966 0.0 0.5966
0.0808 8.75 140 0.0740 0.3257 0.6515 0.6515 nan 0.6515 0.0 0.6515
0.0694 10.0 160 0.0725 0.3503 0.7005 0.7005 nan 0.7005 0.0 0.7005
0.0589 11.25 180 0.0663 0.2629 0.5259 0.5259 nan 0.5259 0.0 0.5259
0.0473 12.5 200 0.0604 0.3685 0.7369 0.7369 nan 0.7369 0.0 0.7369
0.0433 13.75 220 0.0569 0.3055 0.6109 0.6109 nan 0.6109 0.0 0.6109
0.0511 15.0 240 0.0546 0.3572 0.7145 0.7145 nan 0.7145 0.0 0.7145
0.04 16.25 260 0.0536 0.3234 0.6467 0.6467 nan 0.6467 0.0 0.6467
0.0365 17.5 280 0.0555 0.3086 0.6171 0.6171 nan 0.6171 0.0 0.6171
0.0314 18.75 300 0.0505 0.3595 0.7191 0.7191 nan 0.7191 0.0 0.7191
0.0295 20.0 320 0.0536 0.3079 0.6159 0.6159 nan 0.6159 0.0 0.6159
0.0337 21.25 340 0.0490 0.3446 0.6891 0.6891 nan 0.6891 0.0 0.6891
0.0325 22.5 360 0.0489 0.3946 0.7891 0.7891 nan 0.7891 0.0 0.7891
0.0314 23.75 380 0.0514 0.3184 0.6368 0.6368 nan 0.6368 0.0 0.6368
0.0267 25.0 400 0.0485 0.3572 0.7144 0.7144 nan 0.7144 0.0 0.7144
0.0321 26.25 420 0.0490 0.3787 0.7573 0.7573 nan 0.7573 0.0 0.7573
0.025 27.5 440 0.0474 0.3615 0.7230 0.7230 nan 0.7230 0.0 0.7230
0.0225 28.75 460 0.0472 0.3660 0.7319 0.7319 nan 0.7319 0.0 0.7319
0.0247 30.0 480 0.0502 0.3488 0.6976 0.6976 nan 0.6976 0.0 0.6976
0.0216 31.25 500 0.0483 0.3536 0.7072 0.7072 nan 0.7072 0.0 0.7072
0.0195 32.5 520 0.0508 0.3289 0.6578 0.6578 nan 0.6578 0.0 0.6578
0.0259 33.75 540 0.0496 0.3846 0.7692 0.7692 nan 0.7692 0.0 0.7692
0.0242 35.0 560 0.0487 0.3464 0.6928 0.6928 nan 0.6928 0.0 0.6928
0.0217 36.25 580 0.0503 0.3325 0.6650 0.6650 nan 0.6650 0.0 0.6650
0.0204 37.5 600 0.0502 0.3429 0.6858 0.6858 nan 0.6858 0.0 0.6858
0.0204 38.75 620 0.0507 0.3457 0.6913 0.6913 nan 0.6913 0.0 0.6913
0.0191 40.0 640 0.0494 0.3494 0.6988 0.6988 nan 0.6988 0.0 0.6988
0.0204 41.25 660 0.0503 0.3426 0.6852 0.6852 nan 0.6852 0.0 0.6852
0.019 42.5 680 0.0485 0.3616 0.7232 0.7232 nan 0.7232 0.0 0.7232
0.0198 43.75 700 0.0494 0.3504 0.7008 0.7008 nan 0.7008 0.0 0.7008
0.0212 45.0 720 0.0491 0.3531 0.7062 0.7062 nan 0.7062 0.0 0.7062

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
8
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for HorcruxNo13/segformer-b0-finetuned-segments-toolwear

Base model

nvidia/mit-b0
Finetuned
(342)
this model