alpaca-lora-7b-en-pt-es-ca-eu-gl-at

This model is a fine-tuned version of decapoda-research/llama-7b-hf on the HiTZ/alpaca_mt ['en', 'pt', 'es', 'ca', 'eu', 'gl', 'at'] dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 26
  • eval_batch_size: 26
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 5
  • total_train_batch_size: 130
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.3772 0.04 100 1.3860
1.3043 0.07 200 1.2904
1.2307 0.11 300 1.2409
1.2132 0.15 400 1.2086
1.1987 0.19 500 1.1854
1.1551 0.22 600 1.1660
1.1613 0.26 700 1.1516
1.144 0.3 800 1.1407
1.1494 0.34 900 1.1297
1.1072 0.37 1000 1.1196
1.1302 0.41 1100 1.1117
1.1074 0.45 1200 1.1058
1.0846 0.48 1300 1.0995
1.086 0.52 1400 1.0935
1.0793 0.56 1500 1.0889
1.0931 0.6 1600 1.0847
1.0905 0.63 1700 1.0804
1.0793 0.67 1800 1.0775
1.0795 0.71 1900 1.0748
1.0861 0.74 2000 1.0725
1.0881 0.78 2100 1.0705
1.0673 0.82 2200 1.0691
1.0626 0.86 2300 1.0681
1.0633 0.89 2400 1.0674
1.0601 0.93 2500 1.0669
1.0849 0.97 2600 1.0667

Framework versions

  • Transformers 4.28.0.dev0
  • Pytorch 2.0.0+cu117
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Dataset used to train HiTZ/alpaca-lora-7b-en-pt-es-ca-eu-gl-at

Collection including HiTZ/alpaca-lora-7b-en-pt-es-ca-eu-gl-at