Wound-Image-classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1209
  • Accuracy: 0.965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0919 1.0 200 0.7780 0.76
0.6157 2.0 400 0.5695 0.7925
0.4894 3.0 600 0.3667 0.8775
0.3786 4.0 800 0.4436 0.8625
0.3142 5.0 1000 0.4412 0.8625
0.2636 6.0 1200 0.4430 0.86
0.198 7.0 1400 0.2760 0.9175
0.1456 8.0 1600 0.2211 0.93
0.1586 9.0 1800 0.3520 0.905
0.1307 10.0 2000 0.3188 0.9175
0.106 11.0 2200 0.3167 0.925
0.0975 12.0 2400 0.2633 0.92
0.0734 13.0 2600 0.1813 0.9525
0.0994 14.0 2800 0.2150 0.945
0.0622 15.0 3000 0.1757 0.955
0.0609 16.0 3200 0.1209 0.965

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
38
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Hemg/Wound-Image-classification

Finetuned
(1848)
this model