Deepfake-image

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0662
  • Accuracy: 0.9743

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2672 1.0 297 0.1128 0.9577
0.0958 2.0 595 0.0953 0.9634
0.0816 3.0 892 0.0776 0.9694
0.0712 4.0 1190 0.0746 0.9707
0.0647 5.0 1487 0.0680 0.9726
0.0616 6.0 1785 0.0656 0.9735
0.0565 7.0 2082 0.0676 0.9736
0.0533 7.99 2376 0.0662 0.9743

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2
  • Datasets 2.19.0
  • Tokenizers 0.15.2
Downloads last month
83
Safetensors
Model size
85.8M params
Tensor type
F32
ยท
Inference Providers NEW
Drag image file here or click to browse from your device

Model tree for Hemg/Deepfake-image

Finetuned
(1970)
this model

Space using Hemg/Deepfake-image 1