Edit model card

Brain-Tumor-Classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0872
  • Accuracy: 0.9758

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2074 1.0 44 0.8060 0.8128
0.4897 2.0 88 0.3008 0.9274
0.2462 3.0 132 0.2464 0.9331
0.1937 4.0 176 0.1918 0.9502
0.1523 5.0 220 0.1699 0.9502
0.1371 6.0 264 0.1372 0.9644
0.1104 7.0 308 0.1121 0.9708
0.1097 8.0 352 0.1220 0.9651
0.1015 9.0 396 0.1053 0.9737
0.0841 10.0 440 0.1142 0.9708
0.0839 11.0 484 0.1073 0.9708
0.0771 12.0 528 0.1156 0.9665
0.074 13.0 572 0.1203 0.9644
0.0652 14.0 616 0.0706 0.9858
0.0694 15.0 660 0.0984 0.9744
0.0596 16.0 704 0.0872 0.9758

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
0
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hemg/Brain-Tumor-Classification

Finetuned
(1684)
this model