Edit model card

opus-mt-tc-base-uk-tr

Neural machine translation model for translating from Ukrainian (uk) to Turkish (tr).

This model is part of the OPUS-MT project, an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of Marian NMT, an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from OPUS and training pipelines use the procedures of OPUS-MT-train.

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

Model info

This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of >>id<< (id = valid target language ID), e.g. >><<

Usage

A short example code:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    ">>tur<< Тисячі єн достатньо?",
    ">>tur<< Цюріх — місто у Швейцарії."
]

model_name = "pytorch-models/opus-mt-tc-base-uk-tr"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     Binlerce yen yeterli mi?
#     Zürih, İsviçre'de bir şehirdir.

You can also use OPUS-MT models with the transformers pipelines, for example:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-base-uk-tr")
print(pipe(">>tur<< Тисячі єн достатньо?"))

# expected output: Binlerce yen yeterli mi?

Benchmarks

langpair testset chr-F BLEU #sent #words
ukr-tur tatoeba-test-v2021-08-07 0.70938 45.2 2520 11927
ukr-tur flores101-devtest 0.54001 20.5 1012 20253

Acknowledgements

The work is supported by the European Language Grid as pilot project 2866, by the FoTran project, funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the MeMAD project, funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by CSC -- IT Center for Science, Finland.

Model conversion info

  • transformers version: 4.16.2
  • OPUS-MT git hash: 1bdabf7
  • port time: Wed Mar 23 22:02:24 EET 2022
  • port machine: LM0-400-22516.local
Downloads last month
1
Hosted inference API
This model can be loaded on the Inference API on-demand.

Evaluation results