SegFormer_mit-b5_Clean-Set3-Grayscale_Augmented_Medium

This model is a fine-tuned version of nvidia/mit-b5 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train-Loss: 0.0088
  • Val-Loss: 0.0134
  • Mean Iou: 0.9793
  • Mean Accuracy: 0.9903
  • Overall Accuracy: 0.9947
  • Accuracy Background: 0.9971
  • Accuracy Melt: 0.9785
  • Accuracy Substrate: 0.9952
  • Iou Background: 0.9935
  • Iou Melt: 0.9524
  • Iou Substrate: 0.9920

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Melt Accuracy Substrate Iou Background Iou Melt Iou Substrate
0.1305 0.3968 50 0.1020 0.8694 0.9199 0.9644 0.9855 0.8016 0.9726 0.9651 0.6989 0.9443
0.0906 0.7937 100 0.0668 0.8972 0.9187 0.9757 0.9891 0.7703 0.9968 0.9818 0.7488 0.9609
0.0409 1.1905 150 0.0606 0.9231 0.9414 0.9814 0.9879 0.8379 0.9984 0.9840 0.8152 0.9702
0.0678 1.5873 200 0.0344 0.9524 0.9762 0.9879 0.9883 0.9463 0.9941 0.9848 0.8890 0.9834
0.0312 1.9841 250 0.0340 0.9489 0.9756 0.9874 0.9935 0.9442 0.9892 0.9869 0.8779 0.9818
0.0334 2.3810 300 0.0277 0.9576 0.9826 0.9895 0.9956 0.9637 0.9885 0.9908 0.8987 0.9833
0.0286 2.7778 350 0.0264 0.9581 0.9776 0.9898 0.9964 0.9452 0.9912 0.9896 0.9002 0.9846
0.0214 3.1746 400 0.0230 0.9661 0.9824 0.9915 0.9926 0.9587 0.9958 0.9903 0.9206 0.9875
0.0208 3.5714 450 0.0203 0.9692 0.9876 0.9922 0.9968 0.9751 0.9910 0.9916 0.9283 0.9878
0.0146 3.9683 500 0.0231 0.9667 0.9852 0.9915 0.9961 0.9680 0.9913 0.9904 0.9229 0.9870
0.0197 4.3651 550 0.0208 0.9662 0.9883 0.9916 0.9950 0.9790 0.9908 0.9914 0.9200 0.9873
0.0198 4.7619 600 0.0184 0.9722 0.9836 0.9930 0.9969 0.9587 0.9951 0.9916 0.9355 0.9896
0.019 5.1587 650 0.0211 0.9693 0.9889 0.9919 0.9970 0.9801 0.9896 0.9907 0.9298 0.9872
0.0115 5.5556 700 0.0193 0.9706 0.9833 0.9928 0.9963 0.9584 0.9953 0.9926 0.9304 0.9888
0.0135 5.9524 750 0.0166 0.9740 0.9867 0.9933 0.9965 0.9692 0.9945 0.9919 0.9401 0.9899
0.0127 6.3492 800 0.0182 0.9736 0.9866 0.9932 0.9969 0.9689 0.9939 0.9918 0.9395 0.9895
0.0129 6.7460 850 0.0194 0.9723 0.9853 0.9930 0.9958 0.9651 0.9951 0.9920 0.9354 0.9894
0.0124 7.1429 900 0.0145 0.9771 0.9900 0.9941 0.9972 0.9789 0.9940 0.9928 0.9472 0.9911
0.011 7.5397 950 0.0149 0.9774 0.9876 0.9941 0.9972 0.9704 0.9953 0.9923 0.9485 0.9914
0.0176 7.9365 1000 0.0212 0.9681 0.9890 0.9919 0.9972 0.9802 0.9895 0.9923 0.9251 0.9869
0.0205 8.3333 1050 0.0171 0.9724 0.9895 0.9930 0.9971 0.9797 0.9918 0.9924 0.9356 0.9893
0.0103 8.7302 1100 0.0141 0.9780 0.9891 0.9943 0.9968 0.9754 0.9953 0.9928 0.9497 0.9915
0.0093 9.1270 1150 0.0148 0.9769 0.9881 0.9941 0.9965 0.9723 0.9956 0.9930 0.9466 0.9911
0.0113 9.5238 1200 0.0136 0.9788 0.9881 0.9945 0.9977 0.9711 0.9955 0.9929 0.9517 0.9918
0.0132 9.9206 1250 0.0144 0.9783 0.9882 0.9944 0.9971 0.9720 0.9957 0.9930 0.9503 0.9915
0.0104 10.3175 1300 0.0135 0.9788 0.9882 0.9945 0.9976 0.9714 0.9957 0.9932 0.9515 0.9918
0.0153 10.7143 1350 0.0129 0.9796 0.9889 0.9947 0.9970 0.9734 0.9962 0.9932 0.9534 0.9922
0.0091 11.1111 1400 0.0142 0.9783 0.9900 0.9944 0.9968 0.9784 0.9950 0.9931 0.9500 0.9917
0.0098 11.5079 1450 0.0139 0.9789 0.9889 0.9946 0.9967 0.9740 0.9962 0.9933 0.9516 0.9920
0.0094 11.9048 1500 0.0136 0.9795 0.9887 0.9947 0.9977 0.9730 0.9956 0.9931 0.9533 0.9920
0.0088 12.3016 1550 0.0134 0.9793 0.9903 0.9947 0.9971 0.9785 0.9952 0.9935 0.9524 0.9920

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
84.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hasano20/SegFormer_mit-b5_Clean-Set3-Grayscale_Augmented_Medium

Base model

nvidia/mit-b5
Finetuned
(42)
this model