SegFormer_Clean_Set1_240430_V2-Augmented_mit-b5

This model is a fine-tuned version of nvidia/mit-b5 on the Hasano20/Clean_Set1_240430_V2-Augmented dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0899
  • Mean Iou: 0.8524
  • Mean Accuracy: 0.8932
  • Overall Accuracy: 0.9653
  • Accuracy Background: 0.9900
  • Accuracy Melt: 0.7107
  • Accuracy Substrate: 0.9788
  • Iou Background: 0.9693
  • Iou Melt: 0.6451
  • Iou Substrate: 0.9429

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Melt Accuracy Substrate Iou Background Iou Melt Iou Substrate
0.1394 1.6129 50 0.2486 0.6252 0.6776 0.9171 0.9800 0.0713 0.9816 0.9285 0.0680 0.8792
0.2482 3.2258 100 0.2178 0.6883 0.7470 0.9224 0.9831 0.3037 0.9543 0.9307 0.2490 0.8854
0.1697 4.8387 150 0.2044 0.6993 0.7613 0.9236 0.9847 0.3511 0.9480 0.9313 0.2796 0.8871
0.139 6.4516 200 0.1897 0.7250 0.7835 0.9317 0.9771 0.4086 0.9648 0.9415 0.3395 0.8940
0.0951 8.0645 250 0.1879 0.6863 0.7344 0.9291 0.9851 0.2414 0.9766 0.9372 0.2290 0.8928
0.0812 9.6774 300 0.1875 0.7513 0.8449 0.9285 0.9636 0.6338 0.9372 0.9370 0.4265 0.8903
0.1349 11.2903 350 0.2020 0.6825 0.7357 0.9247 0.9810 0.2577 0.9685 0.9328 0.2265 0.8882
0.1312 12.9032 400 0.1401 0.7627 0.8053 0.9465 0.9864 0.4477 0.9816 0.9624 0.4169 0.9090
0.1061 14.5161 450 0.1051 0.8297 0.8811 0.9586 0.9890 0.6853 0.9691 0.9657 0.5932 0.9302
0.0287 16.1290 500 0.1045 0.8349 0.8835 0.9598 0.9850 0.6905 0.9749 0.9640 0.6073 0.9335
0.2051 17.7419 550 0.0928 0.8466 0.8868 0.9644 0.9875 0.6906 0.9824 0.9687 0.6290 0.9420
0.0898 19.3548 600 0.0899 0.8524 0.8932 0.9653 0.9900 0.7107 0.9788 0.9693 0.6451 0.9429

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
84.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hasano20/SegFormer_Clean_Set1_240430_V2-Augmented_mit-b5

Base model

nvidia/mit-b5
Finetuned
(42)
this model