Edit model card

openai/whisper-tiny

This model is a fine-tuned version of openai/whisper-tiny on the Hanhpt23/GermanMed-full dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9461
  • Wer: 30.9061

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.8146 1.0 194 0.8137 65.1856
0.4421 2.0 388 0.8220 37.1285
0.2251 3.0 582 0.7980 39.5557
0.1636 4.0 776 0.8563 50.7457
0.0827 5.0 970 0.8480 40.8516
0.0772 6.0 1164 0.8860 43.8136
0.0437 7.0 1358 0.9120 37.8793
0.0328 8.0 1552 0.9252 34.8144
0.0222 9.0 1746 0.9330 35.4520
0.0216 10.0 1940 0.9464 33.9504
0.0145 11.0 2134 0.9413 32.3151
0.0072 12.0 2328 0.9746 33.8990
0.0045 13.0 2522 0.9515 32.3871
0.0024 14.0 2716 0.9588 34.3618
0.0031 15.0 2910 0.9483 34.0533
0.0006 16.0 3104 0.9485 30.8135
0.0005 17.0 3298 0.9433 30.8444
0.0004 18.0 3492 0.9449 31.0398
0.0004 19.0 3686 0.9457 30.9575
0.0004 20.0 3880 0.9461 30.9061

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
37.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hanhpt23/whisper-tiny-Encode-GermanMed-full

Finetuned
(1208)
this model