Edit model card

openai/whisper-small

This model is a fine-tuned version of openai/whisper-small on the pphuc25/EngMed dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2775
  • Wer: 25.8817

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.8149 1.0 3491 0.8968 43.5550
0.5126 2.0 6982 0.8805 35.9730
0.3308 3.0 10473 0.9173 36.4008
0.2412 4.0 13964 0.9814 33.9519
0.1667 5.0 17455 1.0400 31.9450
0.1001 6.0 20946 1.0903 33.1316
0.079 7.0 24437 1.1191 33.2309
0.0751 8.0 27928 1.1580 29.3991
0.0515 9.0 31419 1.1723 29.8778
0.0395 10.0 34910 1.1876 29.4972
0.0313 11.0 38401 1.2305 28.8578
0.0129 12.0 41892 1.2344 27.5577
0.0207 13.0 45383 1.2527 29.9002
0.0169 14.0 48874 1.2498 27.3969
0.0055 15.0 52365 1.2604 27.4277
0.003 16.0 55856 1.2627 26.8923
0.0011 17.0 59347 1.2700 26.9135
0.0013 18.0 62838 1.2695 27.4785
0.0001 19.0 66329 1.2804 26.2836
0.0 20.0 69820 1.2775 25.8817

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hanhpt23/whisper-small-Encode-engmed

Finetuned
(1864)
this model