HamzaSidhu786/distilhubert-finetuned-gtzan

This model is a fine-tuned version of facebook/wav2vec2-base on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6028
  • Accuracy: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0751 1.0 113 2.0343 0.6
1.5734 2.0 226 1.6338 0.58
1.3801 3.0 339 1.2674 0.7
1.0384 4.0 452 1.1376 0.68
0.973 5.0 565 0.9849 0.73
1.0033 6.0 678 0.7686 0.76
0.6347 7.0 791 0.5909 0.87
0.6537 8.0 904 0.9489 0.75
0.359 9.0 1017 0.7478 0.81
0.2268 10.0 1130 0.6247 0.84
0.2674 11.0 1243 0.6437 0.84
0.2237 12.0 1356 0.7997 0.81
0.1418 13.0 1469 0.7738 0.84
0.1201 14.0 1582 0.5696 0.87
0.019 15.0 1695 0.8173 0.84
0.0175 16.0 1808 0.6395 0.88
0.16 17.0 1921 0.6062 0.87
0.0137 18.0 2034 0.5422 0.9
0.0127 19.0 2147 0.6421 0.88
0.0129 20.0 2260 0.6028 0.88

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
26
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for HamzaSidhu786/distilhubert-finetuned-gtzan

Finetuned
(683)
this model

Dataset used to train HamzaSidhu786/distilhubert-finetuned-gtzan

Evaluation results