bert-base-multilingual-uncased-finetuned-ner-lenerBR

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the lener_br dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1568
  • Precision: 0.8678
  • Recall: 0.8758
  • F1: 0.8718
  • Accuracy: 0.9707

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 245 0.1819 0.7691 0.8118 0.7899 0.9585
No log 2.0 490 0.1487 0.7383 0.8098 0.7724 0.9586
0.1325 3.0 735 0.1532 0.8662 0.8777 0.8719 0.9683
0.1325 4.0 980 0.1470 0.8770 0.8800 0.8785 0.9698
0.0233 5.0 1225 0.1155 0.8493 0.8839 0.8663 0.9750
0.0233 6.0 1470 0.1727 0.8874 0.8822 0.8848 0.9701
0.0126 7.0 1715 0.1698 0.8890 0.8853 0.8871 0.9710
0.0126 8.0 1960 0.1687 0.8651 0.8783 0.8716 0.9702
0.0076 9.0 2205 0.1593 0.8077 0.8797 0.8422 0.9668
0.0076 10.0 2450 0.1568 0.8678 0.8758 0.8718 0.9707

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
115
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for GuiTap/bert-base-multilingual-uncased-finetuned-ner-lenerBR

Finetuned
(1692)
this model

Dataset used to train GuiTap/bert-base-multilingual-uncased-finetuned-ner-lenerBR

Evaluation results