Edit model card

vit-base-patch16-224-finetuned-main-gpu-30e-final

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0231
  • Accuracy: 0.9940

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5113 1.0 551 0.4745 0.7971
0.3409 2.0 1102 0.2697 0.8961
0.2675 3.0 1653 0.1611 0.9381
0.2092 4.0 2204 0.1176 0.9548
0.2008 5.0 2755 0.0889 0.9656
0.1555 6.0 3306 0.0666 0.9759
0.1614 7.0 3857 0.0576 0.9778
0.1518 8.0 4408 0.0517 0.9814
0.1231 9.0 4959 0.0528 0.9812
0.1076 10.0 5510 0.0426 0.9850
0.0953 11.0 6061 0.0634 0.9795
0.1097 12.0 6612 0.0398 0.9860
0.0763 13.0 7163 0.0348 0.9866
0.0895 14.0 7714 0.0341 0.9884
0.06 15.0 8265 0.0381 0.9883
0.0767 16.0 8816 0.0382 0.9875
0.0868 17.0 9367 0.0309 0.9898
0.091 18.0 9918 0.0339 0.9885
0.0817 19.0 10469 0.0243 0.9913
0.0641 20.0 11020 0.0286 0.9906
0.0703 21.0 11571 0.0314 0.9906
0.0642 22.0 12122 0.0261 0.9913
0.0695 23.0 12673 0.0260 0.9920
0.0664 24.0 13224 0.0241 0.9928
0.0552 25.0 13775 0.0258 0.9928
0.056 26.0 14326 0.0230 0.9939
0.0488 27.0 14877 0.0221 0.9936
0.0389 28.0 15428 0.0225 0.9930
0.0402 29.0 15979 0.0231 0.9940
0.0424 30.0 16530 0.0211 0.9939

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results