swin-tiny-patch4-window7-224-finetuned-main-gpu-20e-final

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0251
  • Accuracy: 0.9917

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5767 1.0 551 0.5565 0.7463
0.3985 2.0 1102 0.3165 0.8711
0.2988 3.0 1653 0.1835 0.9293
0.2449 4.0 2204 0.1150 0.9572
0.2037 5.0 2755 0.0993 0.9632
0.1646 6.0 3306 0.0750 0.9717
0.1995 7.0 3857 0.0610 0.9776
0.1659 8.0 4408 0.0485 0.9815
0.1449 9.0 4959 0.0505 0.9821
0.1315 10.0 5510 0.0444 0.9843
0.102 11.0 6061 0.0440 0.9838
0.1039 12.0 6612 0.0359 0.9870
0.0798 13.0 7163 0.0393 0.9869
0.1033 14.0 7714 0.0343 0.9890
0.078 15.0 8265 0.0298 0.9902
0.0765 16.0 8816 0.0299 0.9901
0.0769 17.0 9367 0.0275 0.9908
0.0751 18.0 9918 0.0271 0.9910
0.0822 19.0 10469 0.0251 0.9917
0.0756 20.0 11020 0.0254 0.9913

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results