Text Generation
Transformers
llama
Inference Endpoints
Edit model card

Here is an example to show how to use model quantized by auto_gptq

_3BITS_MODEL_PATH_V1_ = 'GodRain/WizardCoder-15B-V1.1-3bit'

# pip install auto_gptq
from auto_gptq import AutoGPTQForCausalLM
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(_3BITS_MODEL_PATH_V1_)
model = AutoGPTQForCausalLM.from_quantized(_3BITS_MODEL_PATH_V1_)

out = evaluate("Hello, tell me a story about sun", model=model, tokenizer=tokenizer)
print(out[0].strip())
def evaluate(
        batch_data,
        tokenizer,
        model,
        temperature=1,
        top_p=0.9,
        top_k=40,
        num_beams=1,
        max_new_tokens=2048,
        **kwargs,
):
    prompts = generate_prompt(batch_data)
    inputs = tokenizer(prompts, return_tensors="pt", max_length=256, truncation=True)
    input_ids = inputs["input_ids"].to(device)
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.pad_token_id,
        **kwargs,
    )
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
        )
    s = generation_output.sequences
    output = tokenizer.batch_decode(s, skip_special_tokens=True)
    return output

Citiation:

@misc{xu2023wizardlm,
      title={WizardLM: Empowering Large Language Models to Follow Complex Instructions}, 
      author={Can Xu and Qingfeng Sun and Kai Zheng and Xiubo Geng and Pu Zhao and Jiazhan Feng and Chongyang Tao and Daxin Jiang},
      year={2023},
      eprint={2304.12244},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train GodRain/WizardCoder-15B-V1.1-3bit