Edit model card

ASCEND_Dataset_Model

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9199
  • Wer: 0.9540
  • Cer: 0.9868

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
16.9063 1.0 687 4.7768 1.0 1.0
5.0252 2.0 1374 4.7004 1.0 1.0
4.9378 3.0 2061 4.6715 1.0 1.0
5.1468 4.0 2748 4.6605 1.0 1.0
4.9353 5.0 3435 4.6470 1.0 1.0
4.913 6.0 4122 4.6177 1.0 1.0
4.8034 7.0 4809 4.7699 1.0 1.0
4.6905 8.0 5496 4.3596 1.0 1.0
4.5251 9.0 6183 4.2670 1.0 1.0
4.4527 10.0 6870 4.2087 1.0 1.0
4.3731 11.0 7557 4.1950 0.9982 0.9997
4.3461 12.0 8244 4.2287 0.9928 0.9988
4.3224 13.0 8931 4.1565 0.9802 0.9971
4.2504 14.0 9618 4.1254 0.9619 0.9937
4.2196 15.0 10305 4.0377 0.9562 0.9913
4.1911 16.0 10992 4.0576 0.9601 0.9887
4.1079 17.0 11679 4.0630 0.9544 0.9857
4.1117 18.0 12366 4.0009 0.9558 0.9880
4.0324 19.0 13053 3.9245 0.9540 0.9877
3.9871 20.0 13740 3.9199 0.9540 0.9868

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.0.0
  • Tokenizers 0.11.6
Downloads last month
27
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.