FineLlama-3.2-3B-Instruct-ead-GGUF

GGUF quantized versions of Geraldine/FineLlama-3.2-3B-Instruct-ead model, optimized for efficient inference using llama.cpp.

Model Description

  • Base Model: FineLlama-3.2-3B-Instruct-ead
  • Quantization: Various GGUF formats
  • Purpose: EAD tag generation and archival metadata encoding
  • Framework: llama.cpp

Available Variants

The following quantized versions are available:

  • Q2_K variant (1.36 GB)
  • Q3_K_M variant (1.69 GB)
  • Q4_K_M variant (2.02 GB)
  • Q5_K_M variant (2.32 GB)
  • Q6_K variant (2.64 GB)
  • Q8_0 variant (3.42 GB)
  • FP16 variant (6.43 GB)

Installation

  1. Download the desired GGUF model variant
  2. Install llama.cpp following the official instructions
  3. Place the model file in your llama.cpp models directory

Usage

# Example using Q4_K_M quantization
./main -m models/FineLlama-3.2-3B-Instruct-ead-Q4_K_M.gguf -n 1024 --repeat_penalty 1.1

# Example using server mode
./server -m models/FineLlama-3.2-3B-Instruct-ead-Q4_K_M.gguf -c 4096

Example using llama-cpp-python library

from llama_cpp import Llama
query = "..."
llm = Llama.from_pretrained(
    repo_id="Geraldine/FineLlama-3.2-3B-Instruct-ead-GGUF",
    filename="*Q8_0.gguf",
    n_ctx=1024,
    verbose=False
)
output = llm.create_chat_completion(
        messages = [
            {"role": "system", "content": "You are an archivist expert in EAD format."},
            {
                "role": "user",
                "content": query
            }
        ]
)
print(output["choices"][0]["message"]["content"])

Example using Ollama

ollama run hf.co/Geraldine/FineLlama-3.2-3B-Instruct-ead-GGUF:Q4_K_M

Quantization Details

  • Q2_K: 2-bit quantization, optimized for efficiency
  • Q3_K_M: 3-bit quantization with medium precision
  • Q4_K_M: 4-bit quantization with medium precision
  • Q5_K_M: 5-bit quantization with medium precision
  • Q6_K: 6-bit quantization
  • Q8_0: 8-bit quantization, highest precision among quantized versions
  • FP16: Full 16-bit floating point, no quantization

Performance Considerations

  • Lower bit quantizations (Q2_K, Q3_K_M) offer smaller file sizes but may have slightly reduced accuracy
  • Higher bit quantizations (Q6_K, Q8_0) provide better accuracy but require more storage and memory
  • FP16 provides full precision but requires significantly more resources
Downloads last month
414
GGUF
Model size
3.21B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .

Spaces using Geraldine/FineLlama-3.2-3B-Instruct-ead-GGUF 2