ReasonFlux: Hierarchical LLM Reasoning via Scaling Thought Templates

Revolutionary template-augmented reasoning paradigm enpowers a 32B model to outperform o1-mini and DeepSeek-R1 distilled models in reasoning tasks.

Task/Pass@1 ReasonFlux-F1-32B ReasonFlux-Zero-32B R1-Distill-32B o1-mini LIMO -32B s1-32B
MATH500 96.0 91.2 94.3 90.0 90.6 93.0
AIME 2024 76.7 56.7 72.6 56.7 50.0 56.7
AIME 2025 53.3 37.2 46.67 50.8 37.2 49.3
GPQA-Diamond 67.2 61.2 62.1 60.0 65.2 59.6

ReasonFlux-F1-32B

ReasonFlux-F1-32B is our finetuned SOTA-level reasoning LLM by leveraging the template-augmented reasoning trajectories from our ReasonFlux-Zero.

Evaluation

We present the evaluation results of our ReasonFlux-F1-32B on challenging reasoning tasks including AIME2024,AIM2025,MATH500 and GPQA-Diamond. To make a fair comparison, we report the results of the LLMs on our evaluation scripts in ReasonFlux-F1.

Model AIME2024@pass1 AIME2025@pass1 MATH500@pass1 GPQA@pass1
QwQ-32B-Preview 46.7 37.2 90.6 65.2
LIMO-32B 56.3 44.5 94.8 58.1
s1-32B 56.7 49.3 93.0 59.6
OpenThinker-32B 66.0 53.3 94.8 60.1
R1-Distill-32B 70.0 46.7 92.0 59.6
ReasonFlux-Zero-32B 56.7 37.2 91.2 61.2
ReasonFlux-F1-32B 76.7 53.3 96.0 67.2

Quick start with VLLM

from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = 'Gen-Verse/ReasonFlux-F1'

model = LLM(
    model_id,
    tensor_parallel_size=8,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)

sampling_params = SamplingParams(
    max_tokens=32768,
)
# 2022 AIME I Problems/Problem 15
question = """Let \(x, y\), and \(z\) be positive real numbers satisfying the system of equations:
\[
\begin{array}{c}
\sqrt{2 x-x y}+\sqrt{2 y-x y}=1 \\
\sqrt{2 y-y z}+\sqrt{2 z-y z}=\sqrt{2} \\
\sqrt{2 z-z x}+\sqrt{2 x-z x}=\sqrt{3} .
\end{array}
\]
Then \(\left[(1-x)(1-y)(1-z)\right]^{2}\) can be written as \(\frac{m}{n}\), where \(m\) and \(n\) are relatively prime positive integers. Find \(m+n\)."""
ds_prompt="<|User|>\n" + question + "<|Assistant|>\n"
output = model.generate(ds_prompt, sampling_params=sampling_params)
print(output[0].outputs[0].text)

Citation

@article{yang2025reasonflux,
  title={ReasonFlux: Hierarchical LLM Reasoning via Scaling Thought Templates},
  author={Yang, Ling and Yu, Zhaochen and Cui, Bin and Wang, Mengdi},
  journal={arXiv preprint arXiv:2502.06772},
  year={2025}
}
Downloads last month
31
Safetensors
Model size
32.8B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Gen-Verse/ReasonFlux-F1

Finetuned
(50)
this model
Quantizations
2 models