File size: 2,433 Bytes
585be15
 
f8309bc
 
 
 
585be15
 
 
f8309bc
585be15
 
 
 
 
 
 
 
 
 
 
 
 
f8309bc
585be15
f8309bc
585be15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- GaetanMichelet/chat-60_ft_task-1_auto
- GaetanMichelet/chat-120_ft_task-1_auto
- GaetanMichelet/chat-180_ft_task-1_auto
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-1_180-samples_config-2_auto
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama-31-8B_task-1_180-samples_config-2_auto

This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the GaetanMichelet/chat-60_ft_task-1_auto, the GaetanMichelet/chat-120_ft_task-1_auto and the GaetanMichelet/chat-180_ft_task-1_auto datasets.
It achieves the following results on the evaluation set:
- Loss: 0.8755

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 1.178         | 0.9412  | 8    | 1.1844          |
| 0.9678        | 2.0     | 17   | 1.0291          |
| 0.9547        | 2.9412  | 25   | 0.9495          |
| 0.8037        | 4.0     | 34   | 0.8970          |
| 0.7404        | 4.9412  | 42   | 0.8755          |
| 0.6681        | 6.0     | 51   | 0.9058          |
| 0.4752        | 6.9412  | 59   | 0.9785          |
| 0.3663        | 8.0     | 68   | 1.0201          |
| 0.2328        | 8.9412  | 76   | 1.2509          |
| 0.1375        | 10.0    | 85   | 1.4120          |
| 0.1013        | 10.9412 | 93   | 1.4669          |
| 0.0523        | 12.0    | 102  | 1.5482          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1