Whisper Small ko

This model is a fine-tuned version of openai/whisper-small on the customdata dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0892
  • Cer: 1.7222
  • Wer: 1.3576

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
1.0297 1.9231 100 0.8542 5.7071 5.2420
0.2945 3.8462 200 0.2539 3.1678 2.6524
0.022 5.7692 300 0.0721 2.3633 1.8982
0.0066 7.6923 400 0.0744 2.1999 1.7348
0.0055 9.6154 500 0.0681 1.9485 1.5462
0.0021 11.5385 600 0.0743 2.1622 1.7096
0.0019 13.4615 700 0.0723 2.1747 1.7096
0.0005 15.3846 800 0.0733 1.8856 1.4833
0.0001 17.3077 900 0.0738 1.9233 1.4582
0.0001 19.2308 1000 0.0748 1.9233 1.4582
0.0001 21.1538 1100 0.0759 1.8353 1.4708
0.0001 23.0769 1200 0.0765 1.8102 1.4456
0.0001 25.0 1300 0.0770 1.7976 1.4331
0.0001 26.9231 1400 0.0773 1.7976 1.4331
0.0001 28.8462 1500 0.0776 1.7976 1.4331
0.0001 30.7692 1600 0.0780 1.7976 1.4331
0.0001 32.6923 1700 0.0782 1.7976 1.4331
0.0001 34.6154 1800 0.0786 1.7850 1.4205
0.0001 36.5385 1900 0.0790 1.7850 1.4205
0.0001 38.4615 2000 0.0794 1.7599 1.3953
0.0001 40.3846 2100 0.0804 1.7599 1.3953
0.0001 42.3077 2200 0.0811 1.7599 1.3953
0.0 44.2308 2300 0.0816 1.7599 1.3953
0.0 46.1538 2400 0.0821 1.7473 1.3828
0.0 48.0769 2500 0.0825 1.7473 1.3828
0.0 50.0 2600 0.0829 1.7473 1.3828
0.0 51.9231 2700 0.0832 1.7473 1.3828
0.0 53.8462 2800 0.0836 1.7473 1.3828
0.0 55.7692 2900 0.0840 1.7473 1.3828
0.0 57.6923 3000 0.0843 1.7473 1.3828
0.0 59.6154 3100 0.0846 1.7473 1.3828
0.0 61.5385 3200 0.0849 1.7473 1.3828
0.0 63.4615 3300 0.0853 1.7473 1.3828
0.0 65.3846 3400 0.0855 1.7348 1.3702
0.0 67.3077 3500 0.0858 1.7348 1.3702
0.0 69.2308 3600 0.0860 1.7348 1.3702
0.0 71.1538 3700 0.0863 1.7348 1.3702
0.0 73.0769 3800 0.0866 1.7348 1.3702
0.0 75.0 3900 0.0868 1.7348 1.3702
0.0 76.9231 4000 0.0870 1.7348 1.3702
0.0 78.8462 4100 0.0877 1.7473 1.3828
0.0 80.7692 4200 0.0881 1.7222 1.3576
0.0 82.6923 4300 0.0884 1.7222 1.3576
0.0 84.6154 4400 0.0886 1.7222 1.3576
0.0 86.5385 4500 0.0888 1.7222 1.3576
0.0 88.4615 4600 0.0889 1.7222 1.3576
0.0 90.3846 4700 0.0890 1.7222 1.3576
0.0 92.3077 4800 0.0891 1.7222 1.3576
0.0 94.2308 4900 0.0891 1.7222 1.3576
0.0 96.1538 5000 0.0892 1.7222 1.3576

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.4.0
  • Datasets 2.18.0
  • Tokenizers 0.20.3
Downloads last month
28
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for GGarri/whisper_finetuned_ver241109

Finetuned
(2043)
this model

Evaluation results