Edit model card

spaCy Custom Spancat trained on Diderot & d’Alembert’s Encyclopédie entries

This model is designed to identify and classify text spans corresponding to named entities (such as Spatial, Person, and MISC), as well as nested named entities (including Spatial, Person, and MISC), spatial relations, and other relevant information within French encyclopedic entries.

The spans detected by this model are:

  • NC-Spatial: a common noun that identifies a spatial entity (nominal spatial entity) including natural features, e.g. ville, la rivière, royaume.
  • NP-Spatial: a proper noun identifying the name of a place (spatial named entities), e.g. France, Paris, la Chine.
  • ENE-Spatial: nested spatial entity , e.g. ville de France, royaume de Naples, la mer Baltique.
  • Relation: spatial relation, e.g. dans, sur, à 10 lieues de.
  • Latlong: geographic coordinates, e.g. Long. 19. 49. lat. 43. 55. 44.
  • NC-Person: a common noun that identifies a person (nominal spatial entity), e.g. roi, l'empereur, les auteurs.
  • NP-Person: a proper noun identifying the name of a person (person named entities), e.g. Louis XIV, Pline, les Romains.
  • ENE-Person: nested people entity, e.g. le czar Pierre, roi de Macédoine
  • NP-Misc: a proper noun identifying entities not classified as spatial or person, e.g. l'Eglise, 1702, Pélasgique.
  • ENE-Misc: nested named entity not classified as spatial or person, e.g. l'ordre de S. Jacques, la déclaration du 21 Mars 1671.
  • Head: entry name
  • Domain-Mark: words indicating the knowledge domain (usually after the head and between parenthesis), e.g. Géographie, Geog., en Anatomie.

Model Description

Bias, Risks, and Limitations

This model was trained entirely on French encyclopaedic entries and will likely not perform well on text in other languages or other corpora.

How to Get Started with the Model

Use the code below to get started with the model.

pip install https://huggingface.co/GEODE/fr_spacy_custom_spancat_edda/resolve/main/fr_spacy_custom_spancat_edda-any-py3-none-any.whl
# Using spacy.load().
import spacy
nlp = spacy.load("fr_spacy_custom_spancat_edda")

# Importing as module.
import fr_spacy_custom_spancat_edda
nlp = fr_spacy_custom_spancat_edda.load()
doc = nlp("* ALBI, (Géog.) ville de France, capitale de l'Albigeois, dans le haut Languedoc : elle est sur le Tarn. Long. 19. 49. lat. 43. 55. 44.")

spans = []

for span in doc.spans['sc']:
  spans.append({
      "start": span.start_char,
      "end": span.end_char,
      "labels": [span.label_],
      "text": span.text
  })

print(spans)

# Output
[{'start': 2, 'end': 6, 'labels': ['Head'], 'text': 'ALBI'},
 {'start': 16, 'end': 21, 'labels': ['NC-Spatial'], 'text': 'ville'},
 {'start': 25, 'end': 31, 'labels': ['NP-Spatial'], 'text': 'France'},
 {'start': 33, 'end': 41, 'labels': ['NC-Spatial'], 'text': 'capitale'},
 {'start': 58, 'end': 62, 'labels': ['Relation'], 'text': 'dans'},
 {'start': 92, 'end': 95, 'labels': ['Relation'], 'text': 'sur'},
 {'start': 9, 'end': 14, 'labels': ['Domain-mark'], 'text': 'Géog.'},
 {'start': 45, 'end': 56, 'labels': ['NP-Spatial'], 'text': "l'Albigeois"},
 {'start': 96, 'end': 103, 'labels': ['NP-Spatial'], 'text': 'le Tarn'},
 {'start': 16,
  'end': 31,
  'labels': ['ENE-Spatial'],
  'text': 'ville de France'},
 {'start': 63,
  'end': 80,
  'labels': ['NP-Spatial'],
  'text': 'le haut Languedoc'},
 {'start': 33,
  'end': 56,
  'labels': ['ENE-Spatial'],
  'text': "capitale de l'Albigeois"},
 {'start': 33,
  'end': 80,
  'labels': ['ENE-Spatial'],
  'text': "capitale de l'Albigeois, dans le haut Languedoc"},
 {'start': 16,
  'end': 80,
  'labels': ['ENE-Spatial'],
  'text': "ville de France, capitale de l'Albigeois, dans le haut Languedoc"}]

Training Details

Training Data

The model was trained using a set of 2200 paragraphs randomly selected out of 2001 Encyclopédie's entries. All paragraphs were written in French and are distributed as follows among the Encyclopédie knowledge domains:

Knowledge domain Paragraphs
Géographie 1096
Histoire 259
Droit Jurisprudence 113
Physique 92
Métiers 92
Médecine 88
Philosophie 69
Histoire naturelle 65
Belles-lettres 65
Militaire 62
Commerce 48
Beaux-arts 44
Agriculture 36
Chasse 31
Religion 23
Musique 17

The spans/entities were labeled by the project team along with using pre-labelling with early models to speed up the labelling process. A train/val/test split was used. Validation and test sets are composed of 200 paragraphs each: 100 classified as 'Géographie' and 100 from another knowledge domain. The datasets have the following breakdown of tokens and spans/entities.

Train Validation Test
Paragraphs 1,800 200 200
Tokens 132,398 14,959 13,881
NC-Spatial 3,252 358 355
NP-Spatial 4,707 464 519
ENE-Spatial 3,043 326 334
Relation 2,093 219 226
Latlong 553 66 72
NC-Person 1,378 132 133
NP-Person 1,599 170 150
ENE-Person 492 49 57
NP-Misc 948 108 96
ENE-Misc 255 31 22
Head 1,261 142 153
Domain-Mark 1,069 122 133

Training Procedure

For full training details and results please see the GitHub repository: github.com/GEODE-project/ner-spancat-edda

Evaluation

Evaluation is performed using the spacy evaluate command line interface:

  • Overall model performances (Test set)
Precision Recall F-score
94.09 79.91 86.42
  • Model performances by entity (Test set)
Precision Recall F-score
NC-Spatial 96.50 93.24 94.84
NP-Spatial 92.74 95.95 94.32
ENE-Spatial 91.67 95.51 93.55
Relation 97.33 64.60 77.66
Latlong 0.00 0.00 0.00
NC-Person 93.07 70.68 80.34
NP-Person 92.47 90.00 91.22
ENE-Person 92.16 82.46 87.04
NP-Misc 93.24 71.88 81.18
ENE-Misc 0.00 0.00 0.00
Head 97.37 24.18 38.74
Domain-mark 99.19 91.73 95.31

Cite this work

Moncla, L., Vigier, D., & McDonough, K. (2024). GeoEDdA: A Gold Standard Dataset for Geo-semantic Annotation of Diderot & d’Alembert’s Encyclopédie. In proceedings of the 2nd International Workshop on Geographic Information Extraction from Texts (GeoExT'24), ECIR Conference, Glasgow, UK.

Acknowledgement

The authors are grateful to the ASLAN project (ANR-10-LABX-0081) of the Université de Lyon, for its financial support within the French program "Investments for the Future" operated by the National Research Agency (ANR). Data courtesy the ARTFL Encyclopédie Project, University of Chicago.

Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results