MarkupLM Large fine-tuned on WebSRC to allow Question Answering.
This model is adapted from Microsoft's MarkupLM. This fine-tuned model is the result of partially following instructions in the MarkupLM git repo (with adjustments described farther below under the Fine-tuning args section.) This version not endorsed by Microsoft.
Test the question answering out in the Markup QA space here
---------------------------------------------------------------------------------
Fine-tuned Multimodal (text +markup language) pre-training for Document AI
Introduction (From Microsoft MarkupLM Large Model Card)
MarkupLM is a simple but effective multi-modal pre-training method of text and markup language for visually-rich document understanding and information extraction tasks, such as webpage QA and webpage information extraction. MarkupLM archives the SOTA results on multiple datasets. For more details, please refer to our paper:
MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding Junlong Li, Yiheng Xu, Lei Cui, Furu Wei
---------------------------------------------------------------------------------
Fine-tuning args: --per_gpu_train_batch_size 4 --warmup_ratio 0.1 --num_train_epochs 4
Training was performed on only a small subset of the WebSRC:
The number of total websites is 60
The train websites list is ['ga09']
The test websites list is []
The dev websites list is ['ga12', 'ph04', 'au08', 'ga10', 'au01', 'bo17', 'mo02', 'jo11', 'sp09', 'sp10', 'ph03', 'ph01', 'un09', 'sp14', 'jo03', 'sp07', 'un07', 'bo07', 'mo04', 'bo09', 'jo10', 'un12', 're02', 'bo01', 'ca01', 'sp15', 'au12', 'un03', 're03', 'jo13', 'ph02', 'un10', 'au09', 'au10', 'un02', 'mo07', 'sp13', 'bo08', 'sp03', 're05', 'sp06', 'ca02', 'sp02', 'sp01', 'au03', 'sp11', 'mo06', 'bo10', 'un11', 'un06', 'ga01', 'un04', 'ph05', 'au11', 'sp12', 'jo05', 'sp04', 'jo12', 'sp08']
The number of processed websites is 60
---------------------------------------------------------------------------------
Inference test here may not work. Use the transformers markuplm branch from NielsRogge transformers markuplm branch
After installing from there, try the following model and tokenizer assignemnts (consider using a file for the tags dict)
model = MarkupLMForQuestionAnswering.from_pretrained("FuriouslyAsleep/markuplm-large-finetuned-qa")
tokenizer = MarkupLMTokenizer(
vocab_file="vocab.json",
merges_file="merges.txt",
tags_dict= {"a": 0, "abbr": 1, "acronym": 2, "address": 3, "altGlyph": 4, "altGlyphDef": 5, "altGlyphItem": 6, "animate": 7, "animateColor": 8, "animateMotion": 9, "animateTransform": 10, "applet": 11, "area": 12, "article": 13, "aside": 14, "audio": 15, "b": 16, "base": 17, "basefont": 18, "bdi": 19, "bdo": 20, "bgsound": 21, "big": 22, "blink": 23, "blockquote": 24, "body": 25, "br": 26, "button": 27, "canvas": 28, "caption": 29, "center": 30, "circle": 31, "cite": 32, "clipPath": 33, "code": 34, "col": 35, "colgroup": 36, "color-profile": 37, "content": 38, "cursor": 39, "data": 40, "datalist": 41, "dd": 42, "defs": 43, "del": 44, "desc": 45, "details": 46, "dfn": 47, "dialog": 48, "dir": 49, "div": 50, "dl": 51, "dt": 52, "ellipse": 53, "em": 54, "embed": 55, "feBlend": 56, "feColorMatrix": 57, "feComponentTransfer": 58, "feComposite": 59, "feConvolveMatrix": 60, "feDiffuseLighting": 61, "feDisplacementMap": 62, "feDistantLight": 63, "feFlood": 64, "feFuncA": 65, "feFuncB": 66, "feFuncG": 67, "feFuncR": 68, "feGaussianBlur": 69, "feImage": 70, "feMerge": 71, "feMergeNode": 72, "feMorphology": 73, "feOffset": 74, "fePointLight": 75, "feSpecularLighting": 76, "feSpotLight": 77, "feTile": 78, "feTurbulence": 79, "fieldset": 80, "figcaption": 81, "figure": 82, "filter": 83, "font-face-format": 84, "font-face-name": 85, "font-face-src": 86, "font-face-uri": 87, "font-face": 88, "font": 89, "footer": 90, "foreignObject": 91, "form": 92, "frame": 93, "frameset": 94, "g": 95, "glyph": 96, "glyphRef": 97, "h1": 98, "h2": 99, "h3": 100, "h4": 101, "h5": 102, "h6": 103, "head": 104, "header": 105, "hgroup": 106, "hkern": 107, "hr": 108, "html": 109, "i": 110, "iframe": 111, "image": 112, "img": 113, "input": 114, "ins": 115, "kbd": 116, "keygen": 117, "label": 118, "legend": 119, "li": 120, "line": 121, "linearGradient": 122, "link": 123, "main": 124, "map": 125, "mark": 126, "marker": 127, "marquee": 128, "mask": 129, "math": 130, "menu": 131, "menuitem": 132, "meta": 133, "metadata": 134, "meter": 135, "missing-glyph": 136, "mpath": 137, "nav": 138, "nobr": 139, "noembed": 140, "noframes": 141, "noscript": 142, "object": 143, "ol": 144, "optgroup": 145, "option": 146, "output": 147, "p": 148, "param": 149, "path": 150, "pattern": 151, "picture": 152, "plaintext": 153, "polygon": 154, "polyline": 155, "portal": 156, "pre": 157, "progress": 158, "q": 159, "radialGradient": 160, "rb": 161, "rect": 162, "rp": 163, "rt": 164, "rtc": 165, "ruby": 166, "s": 167, "samp": 168, "script": 169, "section": 170, "select": 171, "set": 172, "shadow": 173, "slot": 174, "small": 175, "source": 176, "spacer": 177, "span": 178, "stop": 179, "strike": 180, "strong": 181, "style": 182, "sub": 183, "summary": 184, "sup": 185, "svg": 186, "switch": 187, "symbol": 188, "table": 189, "tbody": 190, "td": 191, "template": 192, "text": 193, "textPath": 194, "textarea": 195, "tfoot": 196, "th": 197, "thead": 198, "time": 199, "title": 200, "tr": 201, "track": 202, "tref": 203, "tspan": 204, "tt": 205, "u": 206, "ul": 207, "use": 208, "var": 209, "video": 210, "view": 211, "vkern": 212, "wbr": 213, "xmp": 214},
add_prefix_space=True,)
Go to https://github.com/uwts/ProjectRisk for sample script.
- Downloads last month
- 25