File size: 6,970 Bytes
66d76af 8a107f3 9a7e61d 715ede5 8a107f3 66d76af 0e1b634 7cc7300 52562b6 0e1b634 7cc7300 c77de62 7016bc5 6ec832e 0180191 7cc7300 7689ab2 66d76af 9f0f927 66d76af 7cc7300 9f0f927 7cc7300 ad73b87 7cc7300 9f0f927 ad73b87 9f0f927 f0c00ac 9f0f927 7cc7300 2ece835 8b0209d 8cb9a40 8b0209d 4c4b3b9 8b0209d 4c4b3b9 8b0209d 4c4b3b9 8b0209d 2ece835 8b0209d 2ece835 8b0209d dae8b5c 1413ea5 dae8b5c 1413ea5 7cc7300 66d76af d1d5178 471a540 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
---
license: creativeml-openrail-m
tags:
- safety-checker
- tensorflow
- node.js
---
# Google Safesearch Mini Model Card
Initially, the training data consisted of 278,000 images, and the model achieved 99% training and test acc. Now, this model is trained on 2,220,000+ images scraped from Google Images, Reddit, Imgur, and Github.
It predicts the likelihood of an image being nsfw_gore, nsfw_suggestive, and safe.
After 20 epochs on PyTorch, the finetuned InceptionV3 model achieves 94% acc on both training and test data. After 3.3 epochs on Keras, the finetuned Xception model scores 94% acc on training set and 92% on test set.
Using this instead of the stable diffusion safety checker allows users to save 1.12GB of RAM and disk space.
<br>
# PyTorch
The PyTorch model runs much slower with transformers, so downloading it externally is a better option.
```bash
pip install --upgrade torchvision
```
```python
import torch, os
from PIL import Image
import warnings
warnings.filterwarnings("ignore")
PATH_TO_IMAGE = 'https://images.unsplash.com/photo-1594568284297-7c64464062b1'
USE_CUDA = False
def download_model():
print("Downloading google_safesearch_mini.bin...")
import urllib.request
url = "https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/pytorch_model.bin"
urllib.request.urlretrieve(url, "google_safesearch_mini.bin")
def run():
if not os.path.exists("google_safesearch_mini.bin"):
download_model()
model = torch.jit.load('./google_safesearch_mini.bin')
if PATH_TO_IMAGE.startswith('http://') or PATH_TO_IMAGE.startswith('https://'):
import requests
from io import BytesIO
response = requests.get(PATH_TO_IMAGE)
img = Image.open(BytesIO(response.content)).convert('RGB')
else:
img = Image.open(PATH_TO_IMAGE).convert('RGB')
from torchvision import transforms
transform = transforms.Compose([
transforms.Resize(299),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
img = transform(img)
img = img.unsqueeze(0)
if USE_CUDA:
img = img.cuda()
model = model.cuda()
else:
img = img.cpu()
model = model.cpu()
model.eval()
with torch.no_grad():
out, _ = model(img)
_, predicted = torch.max(out.data, 1)
classes = {
0: 'nsfw_gore',
1: 'nsfw_suggestive',
2: 'safe'
}
# account for edge cases
if predicted[0] != 2 and abs(out[0][2] - out[0][predicted[0]]) > 0.22:
img = Image.new('RGB', image.size, color = (0, 255, 255))
print("\033[93m" + "safe" + "\033[0m")
else:
print('\n\033[1;31m' + classes[predicted.item()] + '\033[0m' if predicted.item() != 2 else '\033[1;32m' + classes[predicted.item()] + '\033[0m\n')
if __name__ == '__main__':
torch.multiprocessing.freeze_support()
run()
```
Output Example:
![prediction](./output_example.png)
<br>
# Keras
I will retrain this at some point, so people can use it directly with `from_pretrained_keras`
```python
import tensorflow as tf
from PIL import Image
import requests, os
# download the model
url = "https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/saved_model.pb"
r = requests.get(url, allow_redirects=True)
if not os.path.exists('tensorflow'):
os.makedirs('tensorflow')
open('tensorflow/saved_model.pb', 'wb').write(r.content)
# download the variables
url = "https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.data-00000-of-00001"
r = requests.get(url, allow_redirects=True)
if not os.path.exists('tensorflow/variables'):
os.makedirs('tensorflow/variables')
open('tensorflow/variables/variables.data-00000-of-00001', 'wb').write(r.content)
url = "https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.index"
r = requests.get(url, allow_redirects=True)
open('tensorflow/variables/variables.index', 'wb').write(r.content)
# load the model
model = tf.saved_model.load('./tensorflow')
image = Image.open('cat.jpg')
image = image.resize((299, 299))
image = tf.convert_to_tensor(image)
image = tf.expand_dims(image, 0)
# run the model
tensor = model(image)
classes = ['nsfw_gore', 'nsfw_suggestive', 'safe']
prediction = classes[tf.argmax(tensor, 1)[0]]
print('\033[1;32m' + prediction + '\033[0m' if prediction == 'safe' else '\033[1;33m' + prediction + '\033[0m')
```
Output Example:
![prediction](./output_example.png)
<br>
# Tensorflow.js
```bash
npm i @tensorflow/tfjs-node
```
```javascript
const tf = require('@tensorflow/tfjs-node');
const fs = require('fs');
const { pipeline } = require('stream');
const { promisify } = require('util');
const download = async (url, path) => {
// Taken from https://levelup.gitconnected.com/how-to-download-a-file-with-node-js-e2b88fe55409
const streamPipeline = promisify(pipeline);
const response = await fetch(url);
if (!response.ok) {
throw new Error(`unexpected response ${response.statusText}`);
}
await streamPipeline(response.body, fs.createWriteStream(path));
};
async function run() {
// download saved model and variables from https://huggingface.co/FredZhang7/google-safesearch-mini/tree/main/tensorflow
if (!fs.existsSync('tensorflow')) {
fs.mkdirSync('tensorflow');
await download('https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/saved_model.pb', 'tensorflow/saved_model.pb');
fs.mkdirSync('tensorflow/variables');
await download('https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.data-00000-of-00001', 'tensorflow/variables/variables.data-00000-of-00001');
await download('https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.index', 'tensorflow/variables/variables.index');
}
// load model and image
const model = await tf.node.loadSavedModel('./tensorflow/');
const image = tf.node.decodeImage(fs.readFileSync('cat.jpg'), 3);
// predict
const input = tf.expandDims(image, 0);
const tensor = model.predict(input);
const max = tensor.argMax(1);
const classes = ['nsfw_gore', 'nsfw_suggestive', 'safe'];
console.log('\x1b[32m%s\x1b[0m', classes[max.dataSync()[0]], '\n');
}
run();
```
Output Example:
![tfjs output](./tfjs_output.png)
<br>
# Bias and Limitations
Each person's definition of "safe" is different. The images in the dataset are classified as safe/unsafe by Google SafeSearch, Reddit, and Imgur.
It is possible that some images may be safe to others but not to you. Also, when a model encounters an image with things it hasn't seen, it likely makes wrong predictions.
This is why in the PyTorch example, I accounted for the "edge cases" before printing the predictions. |