SentenceTransformer based on mixedbread-ai/deepset-mxbai-embed-de-large-v1
This is a sentence-transformers model finetuned from mixedbread-ai/deepset-mxbai-embed-de-large-v1 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: mixedbread-ai/deepset-mxbai-embed-de-large-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("FareedKhan/mixedbread-ai_deepset-mxbai-embed-de-large-v1_FareedKhan_prime_synthetic_data_2k_3_8")
# Run inference
sentences = [
'\nThe list you provided seems to be a mix of various chemical substances, some of which appear to be medications, others are chemical compounds, and a few could be substances from other fields (e.g., water treatment, food additives). To be more precise, it would be helpful to categorize them properly based on their common usage:\n\n### Medications and Drugs:\n- **Antibiotics**: Cefoxitin, Tobramycin, Amikacin\n- ** pain and inflammation relievers**: Benoxaprofen, Daptomycin, Ceftolozane, Salicylates (Benzydamine, Dexamethasone sodium phosphate)\n- **Intravenous fluids**: Magnesium trisilicate\n- **Antivirals**: Ribavirin, Inotersen\n- **Antibacterial agents**: Epirizole, Floctafenine, Flunixin\n- **Vaccines**: Vaborbactam, Brincidofovir, Adefovir\n- **Neuromodulators**: Cefatrizine, Bumadizone, Alminoprofen\n- **Cancer treatments**: Colistin, Nitrofurantoin, Sisomicin\n\n### Chemical Compounds:\n- **Salts and salts of acidity**: Fosfomycin, Azosemide, Mofebutazone\n- **Amino acids**: Phenylalanine, Nitrosalicylic',
'Which drugs interact with the SERPINA1 gene/protein as carriers?',
'Is there a regulatory function associated with the epidermal growth factor receptor or its interacting proteins in the control of genes or proteins that participate in the inactivation of fast sodium channels during Phase 1 of cardiac action potential propagation?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3911 |
cosine_accuracy@3 | 0.4752 |
cosine_accuracy@5 | 0.495 |
cosine_accuracy@10 | 0.5545 |
cosine_precision@1 | 0.3911 |
cosine_precision@3 | 0.1584 |
cosine_precision@5 | 0.099 |
cosine_precision@10 | 0.0554 |
cosine_recall@1 | 0.3911 |
cosine_recall@3 | 0.4752 |
cosine_recall@5 | 0.495 |
cosine_recall@10 | 0.5545 |
cosine_ndcg@10 | 0.467 |
cosine_mrr@10 | 0.4398 |
cosine_map@100 | 0.4462 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 1,814 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 3 tokens
- mean: 267.06 tokens
- max: 512 tokens
- min: 15 tokens
- mean: 39.66 tokens
- max: 120 tokens
- Samples:
positive anchor
Based on the provided information, it appears you are describing a complex biological system involving various molecules, drugs, diseases, and anatomical structures. Here's a breakdown:
### Key Entities
1. Molecules and Targets
- Mentioned molecules include metabolites, phenols, and drugs, with specific functional groups related to their chemical properties.
- Targets include enzymes (like acetyl-CoA carboxylase) and diseases causing various health conditions (e.g., Finnish type amyloidosis, lung cancer).
2. Functionality and Interactions
- The molecules and drugs interact with various biological processes, pathways, and bodily systems.Identify common genetic targets that interact with both N-(3,5-dibromo-4-hydroxyphenyl)benzamide and 1-Naphthylamine-5-sulfonic acid.
The provided list appears to be a collection of gene symbols related to cancer. Gene symbols are used in genetics and molecular biology to identify genes. Each symbol is associated with a specific gene that plays a role in cellular functions, including cancer processes. When studying cancer, researchers often analyze these genes to understand their roles in tumor development, potential as targets for therapy, or as indicators for patient prognosis. For example, some genes listed are known oncogenes or tumor suppressor genes:
- TP53: A tumor suppressor gene that when mutated can lead to uncontrolled cell growth.
- P53, POLD1, PTEN: These are well-known tumor suppressors that help regulate cell division and DNA repair.
- BRCAWhich anatomical structures lack expression of genes or proteins involved in the homogentisate degradation pathway?
The gene in question appears to have a wide range of functions across various biological processes and body systems. It's involved in several key areas that regulate cellular responses, metabolic processes, and organ development. Here is a summary of its potential roles:
1. Cell Growth and Regulation: The gene contributes to growth control in cells, particularly in smooth muscle cells, and seems to influence cell proliferation, which is essential for tissue repair and development.
2. Nerve Function: It plays a role in functions like signal transduction, neurotrophin signaling, and regulation of neural activity, suggesting it’s involved in neural health and development.
3. Metabolic Processes: There is evidence linkingIdentify genes or proteins that interact with angiotensin-converting enzyme 2 (ACE2) and are linked to a common phenotype or effect.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768 ], "matryoshka_weights": [ 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochlearning_rate
: 1e-05warmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_map@100 |
---|---|---|---|
0 | 0 | - | 0.3930 |
0.0441 | 10 | 1.18 | - |
0.0881 | 20 | 1.0507 | - |
0.1322 | 30 | 0.9049 | - |
0.1762 | 40 | 0.8999 | - |
0.2203 | 50 | 0.6519 | - |
0.2643 | 60 | 0.5479 | - |
0.3084 | 70 | 0.6493 | - |
0.3524 | 80 | 0.4706 | - |
0.3965 | 90 | 0.5459 | - |
0.4405 | 100 | 0.5692 | - |
0.4846 | 110 | 0.7834 | - |
0.5286 | 120 | 0.5341 | - |
0.5727 | 130 | 0.5343 | - |
0.6167 | 140 | 0.4865 | - |
0.6608 | 150 | 0.3942 | - |
0.7048 | 160 | 0.3578 | - |
0.7489 | 170 | 0.5158 | - |
0.7930 | 180 | 0.3426 | - |
0.8370 | 190 | 0.5789 | - |
0.8811 | 200 | 0.5271 | - |
0.9251 | 210 | 0.577 | - |
0.9692 | 220 | 0.5193 | - |
1.0 | 227 | - | 0.4354 |
1.0132 | 230 | 0.4598 | - |
1.0573 | 240 | 0.2735 | - |
1.1013 | 250 | 0.2919 | - |
1.1454 | 260 | 0.3206 | - |
1.1894 | 270 | 0.2851 | - |
1.2335 | 280 | 0.3899 | - |
1.2775 | 290 | 0.3279 | - |
1.3216 | 300 | 0.2155 | - |
1.3656 | 310 | 0.3471 | - |
1.4097 | 320 | 0.327 | - |
1.4537 | 330 | 0.229 | - |
1.4978 | 340 | 0.2902 | - |
1.5419 | 350 | 0.3216 | - |
1.5859 | 360 | 0.2902 | - |
1.6300 | 370 | 0.4527 | - |
1.6740 | 380 | 0.1583 | - |
1.7181 | 390 | 0.3144 | - |
1.7621 | 400 | 0.2573 | - |
1.8062 | 410 | 0.2309 | - |
1.8502 | 420 | 0.3475 | - |
1.8943 | 430 | 0.3082 | - |
1.9383 | 440 | 0.3176 | - |
1.9824 | 450 | 0.2104 | - |
2.0 | 454 | - | 0.4453 |
2.0264 | 460 | 0.2615 | - |
2.0705 | 470 | 0.1599 | - |
2.1145 | 480 | 0.1015 | - |
2.1586 | 490 | 0.2154 | - |
2.2026 | 500 | 0.1161 | - |
2.2467 | 510 | 0.2208 | - |
2.2907 | 520 | 0.2035 | - |
2.3348 | 530 | 0.1622 | - |
2.3789 | 540 | 0.1758 | - |
2.4229 | 550 | 0.2782 | - |
2.4670 | 560 | 0.303 | - |
2.5110 | 570 | 0.1787 | - |
2.5551 | 580 | 0.2221 | - |
2.5991 | 590 | 0.1686 | - |
2.6432 | 600 | 0.2522 | - |
2.6872 | 610 | 0.1334 | - |
2.7313 | 620 | 0.1102 | - |
2.7753 | 630 | 0.2499 | - |
2.8194 | 640 | 0.2648 | - |
2.8634 | 650 | 0.1859 | - |
2.9075 | 660 | 0.2385 | - |
2.9515 | 670 | 0.2283 | - |
2.9956 | 680 | 0.1126 | - |
3.0 | 681 | - | 0.4462 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.2.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.20.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for FareedKhan/mixedbread-ai_deepset-mxbai-embed-de-large-v1_FareedKhan_prime_synthetic_data_2k_3_8
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.391
- Cosine Accuracy@3 on dim 768self-reported0.475
- Cosine Accuracy@5 on dim 768self-reported0.495
- Cosine Accuracy@10 on dim 768self-reported0.554
- Cosine Precision@1 on dim 768self-reported0.391
- Cosine Precision@3 on dim 768self-reported0.158
- Cosine Precision@5 on dim 768self-reported0.099
- Cosine Precision@10 on dim 768self-reported0.055
- Cosine Recall@1 on dim 768self-reported0.391
- Cosine Recall@3 on dim 768self-reported0.475