distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.4534
- Accuracy: 0.89
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9722 | 1.0 | 113 | 1.9114 | 0.55 |
1.1419 | 2.0 | 226 | 1.2501 | 0.68 |
0.9468 | 3.0 | 339 | 0.9497 | 0.72 |
0.6557 | 4.0 | 452 | 0.7704 | 0.77 |
0.5432 | 5.0 | 565 | 0.6772 | 0.8 |
0.2819 | 6.0 | 678 | 0.4918 | 0.86 |
0.2423 | 7.0 | 791 | 0.4934 | 0.86 |
0.1396 | 8.0 | 904 | 0.4834 | 0.87 |
0.1277 | 9.0 | 1017 | 0.4624 | 0.88 |
0.1085 | 10.0 | 1130 | 0.4534 | 0.89 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.0.1+cu117
- Datasets 2.17.1
- Tokenizers 0.15.2
- Downloads last month
- 161
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Eveready/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert