distilbert-base-uncased-finetuned_on_hata_dateset

This model is a fine-tuned version of distilbert/distilbert-base-uncased on the hate_speech18 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0451
  • Accuracy: 0.9178
  • F1: 0.9155
  • Recall: 0.9178
  • Precision: 0.9138

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
0.3342 1.0 268 0.3774 0.8497 0.8702 0.8497 0.9131
0.2411 2.0 536 0.4330 0.9020 0.9097 0.9020 0.9237
0.1374 3.0 804 0.5690 0.8964 0.9050 0.8964 0.9206
0.0804 4.0 1072 1.0798 0.9188 0.9140 0.9188 0.9117
0.0428 5.0 1340 1.0451 0.9178 0.9155 0.9178 0.9138

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Esmail275/distilbert-base-uncased-finetuned_on_hata_dateset

Finetuned
(7214)
this model

Dataset used to train Esmail275/distilbert-base-uncased-finetuned_on_hata_dateset

Evaluation results