Central Asian Food Classification
Model Information
- Base Model: microsoft/swinv2-base-patch4-window16-256
- Dataset: issai/Central_Asian_Food_Dataset
- Library:
transformers
,pytorch
- Pipeline: Image Classification
- License: Creative Commons Attribution Non Commercial 4.0
Model Description
- This model classifies images of Central Asian dishes into 42 different categories.
- The model is fine-tuned on the Central Asian Food Dataset using Swin Transformer v2 architecture.
- The training was conducted on 2 Tesla T4 GPUs in Oregon, USA.
Labels (Classes)
class_names = [
"achichuk", "airan-katyk", "asip", "bauyrsak", "beshbarmak-w-kazy",
"beshbarmak-wo-kazy", "chak-chak", "cheburek", "doner-lavash", "doner-nan",
"hvorost", "irimshik", "kattama-nan", "kazy-karta", "kurt", "kuyrdak",
"kymyz-kymyran", "lagman-fried", "lagman-w-soup", "lagman-wo-soup", "manty",
"naryn", "nauryz-kozhe", "orama", "plov", "samsa", "shashlyk-chicken",
"shashlyk-chicken-v", "shashlyk-kuskovoi", "shashlyk-kuskovoi-v",
"shashlyk-minced-meat", "sheep-head", "shelpek", "shorpa", "soup-plain",
"sushki", "suzbe", "taba-nan", "talkan-zhent", "tushpara-fried",
"tushpara-w-soup", "tushpara-wo-soup"
]
Training
training_args = TrainingArguments(
output_dir="./swinv2_classification",
evaluation_strategy="epoch",
save_strategy="epoch",
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=5,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10
)
Epoch Training Loss Validation Loss
1 0.815700 0.741029
2 0.454500 0.641849
3 0.100500 0.680114
4 0.030000 0.704669
5 0.009000 0.661318
Evaluation Metrics
The model achieved 87% accuracy on the validation set. Below is the classification report with precision, recall, and F1-score for each class:
accuracy 0.87 2735
macro avg 0.86 0.85 0.85 2735
weighted avg 0.88 0.87 0.87 2735
Environmental Impact
The estimated carbon emissions from training this model:
- Emissions: 0.054843 grams CO2
- Source: Code Carbon
- Training Type: Fine-tuning
- Location: Oregon, USA (45.5999, -121.1871)
- Hardware Used: 2x Tesla T4 GPUs, Intel Xeon CPU (4 cores), 31.35 GB RAM
Usage
To use this model for inference:
import requests
from io import BytesIO
from PIL import Image
from transformers import pipeline
# Load the model
pipe = pipeline("image-classification", model="Eraly-ml/centraasia-Swinv2", device=0)
# Image URL
image_url = "https://avatars.mds.yandex.net/get-altay/12813969/2a0000018e10a3da6a2a1d1d2c2745548220/XXXL"
# Download the image from the internet
response = requests.get(image_url)
image = Image.open(BytesIO(response.content))
# Model classes
class_names = [
"achichuk", "airan-katyk", "asip", "bauyrsak", "beshbarmak-w-kazy",
"beshbarmak-wo-kazy", "chak-chak", "cheburek", "doner-lavash", "doner-nan",
"hvorost", "irimshik", "kattama-nan", "kazy-karta", "kurt", "kuyrdak",
"kymyz-kymyran", "lagman-fried", "lagman-w-soup", "lagman-wo-soup", "manty",
"naryn", "nauryz-kozhe", "orama", "plov", "samsa", "shashlyk-chicken",
"shashlyk-chicken-v", "shashlyk-kuskovoi", "shashlyk-kuskovoi-v",
"shashlyk-minced-meat", "sheep-head", "shelpek", "shorpa", "soup-plain",
"sushki", "suzbe", "taba-nan", "talkan-zhent", "tushpara-fried",
"tushpara-w-soup", "tushpara-wo-soup"
]
# Make a prediction
predictions = pipe(image)
# Display results with correct labels
for pred in predictions:
label_id = int(pred["label"].replace("LABEL_", "")) # Extract the number
class_name = class_names[label_id] # Get the class name
score = pred["score"] # Probability
print(f"Class: {class_name}, probability: {score:.4f}")
Citation
If you use this model, please cite:
@misc{CentralAsianFood,
author = {Eraly Gainulla},
title = {Central Asian Food Classification Model},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/Eraly-ml/centraasia-Swinv2}
}
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Eraly-ml/centraasia-Swinv2
Base model
microsoft/swinv2-base-patch4-window16-256