Edit model card

swin-tiny-patch4-window7-224-finetuned-eurosat_animals

This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0772
  • Accuracy: 0.9817

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1783 0.98 37 2.0846 0.1985
1.6593 1.99 75 1.2526 0.7228
0.47 2.99 113 0.2017 0.9494
0.2459 4.0 151 0.1004 0.9728
0.1891 4.98 188 0.0877 0.9785
0.1638 5.99 226 0.0666 0.9831
0.154 6.99 264 0.0693 0.9803
0.1542 8.0 302 0.0646 0.9822
0.1305 8.98 339 0.0663 0.9822
0.1337 9.99 377 0.0593 0.9841
0.129 10.99 415 0.0593 0.9836
0.1179 12.0 453 0.0598 0.9836
0.1025 12.98 490 0.0636 0.9813
0.0993 13.99 528 0.0637 0.9817
0.1043 14.99 566 0.0578 0.9827
0.0996 16.0 604 0.0644 0.9831
0.0866 16.98 641 0.0813 0.9785
0.0879 17.99 679 0.0734 0.9813
0.0812 18.99 717 0.0639 0.9855
0.0864 20.0 755 0.0619 0.9860
0.086 20.98 792 0.0693 0.9794
0.0781 21.99 830 0.0638 0.9831
0.0826 22.99 868 0.0681 0.9822
0.074 24.0 906 0.0687 0.9817
0.0828 24.98 943 0.0738 0.9836
0.0727 25.99 981 0.0655 0.9827
0.0692 26.99 1019 0.0713 0.9836
0.0696 28.0 1057 0.0729 0.9817
0.0792 28.98 1094 0.0707 0.9836
0.0657 29.99 1132 0.0647 0.9827
0.0747 30.99 1170 0.0769 0.9808
0.0861 32.0 1208 0.0665 0.9841
0.0693 32.98 1245 0.0617 0.9850
0.0682 33.99 1283 0.0636 0.9855
0.0615 34.99 1321 0.0685 0.9841
0.0581 36.0 1359 0.0702 0.9822
0.0713 36.98 1396 0.0675 0.9855
0.0593 37.99 1434 0.0697 0.9827
0.0543 38.99 1472 0.0701 0.9831
0.0628 40.0 1510 0.0720 0.9799
0.0606 40.98 1547 0.0794 0.9808
0.0619 41.99 1585 0.0720 0.9827
0.0612 42.99 1623 0.0768 0.9813
0.0435 44.0 1661 0.0748 0.9831
0.0614 44.98 1698 0.0738 0.9841
0.0544 45.99 1736 0.0750 0.9822
0.0569 46.99 1774 0.0802 0.9803
0.0527 48.0 1812 0.0772 0.9831
0.0535 48.98 1849 0.0724 0.9831
0.063 49.99 1887 0.0736 0.9831
0.0534 50.99 1925 0.0767 0.9822
0.0515 52.0 1963 0.0736 0.9817
0.0522 52.98 2000 0.0739 0.9827
0.0474 53.99 2038 0.0687 0.9831
0.0515 54.99 2076 0.0675 0.9846
0.0558 56.0 2114 0.0676 0.9822
0.0461 56.98 2151 0.0714 0.9813
0.0532 57.99 2189 0.0753 0.9803
0.0539 58.99 2227 0.0826 0.9803
0.0428 60.0 2265 0.0785 0.9827
0.0361 60.98 2302 0.0821 0.9813
0.0515 61.99 2340 0.0813 0.9817
0.047 62.99 2378 0.0817 0.9813
0.046 64.0 2416 0.0765 0.9827
0.039 64.98 2453 0.0794 0.9827
0.0399 65.99 2491 0.0805 0.9822
0.0478 66.99 2529 0.0758 0.9817
0.0426 68.0 2567 0.0726 0.9831
0.0383 68.98 2604 0.0785 0.9827
0.0407 69.99 2642 0.0795 0.9813
0.0413 70.99 2680 0.0774 0.9822
0.0428 72.0 2718 0.0765 0.9827
0.0375 72.98 2755 0.0730 0.9836
0.0428 73.99 2793 0.0715 0.9841
0.0443 74.99 2831 0.0744 0.9841
0.0383 76.0 2869 0.0748 0.9822
0.0338 76.98 2906 0.0818 0.9808
0.0445 77.99 2944 0.0759 0.9817
0.0374 78.99 2982 0.0757 0.9827
0.0404 80.0 3020 0.0793 0.9813
0.0336 80.98 3057 0.0750 0.9827
0.0364 81.99 3095 0.0816 0.9813
0.0403 82.99 3133 0.0795 0.9822
0.0287 84.0 3171 0.0818 0.9803
0.0425 84.98 3208 0.0819 0.9803
0.0446 85.99 3246 0.0775 0.9813
0.0341 86.99 3284 0.0772 0.9803
0.0414 88.0 3322 0.0757 0.9813
0.0401 88.98 3359 0.0751 0.9822
0.0442 89.99 3397 0.0775 0.9827
0.046 90.99 3435 0.0794 0.9808
0.0378 92.0 3473 0.0773 0.9822
0.0343 92.98 3510 0.0759 0.9817
0.0348 93.99 3548 0.0766 0.9822
0.0409 94.99 3586 0.0773 0.9817
0.0389 96.0 3624 0.0770 0.9822
0.0362 96.98 3661 0.0773 0.9817
0.0317 97.99 3699 0.0772 0.9817
0.0244 98.01 3700 0.0772 0.9817

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
5
Safetensors
Model size
27.6M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results