swin-tiny-patch4-window7-224-finetuned-eurosat_DATA7_20240410
This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0817
- Accuracy: 0.9731
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.98 | 1.0 | 182 | 1.0130 | 0.4827 |
0.843 | 2.0 | 365 | 0.8658 | 0.5978 |
0.742 | 3.0 | 548 | 0.7068 | 0.6848 |
0.69 | 4.0 | 731 | 0.6297 | 0.7254 |
0.6413 | 5.0 | 913 | 0.5716 | 0.7571 |
0.611 | 6.0 | 1096 | 0.5445 | 0.7671 |
0.5844 | 7.0 | 1279 | 0.5181 | 0.7802 |
0.5616 | 8.0 | 1462 | 0.4757 | 0.7985 |
0.5634 | 9.0 | 1644 | 0.5245 | 0.7896 |
0.5223 | 10.0 | 1827 | 0.4991 | 0.7902 |
0.4723 | 11.0 | 2010 | 0.4363 | 0.8216 |
0.4443 | 12.0 | 2193 | 0.3813 | 0.8403 |
0.4538 | 13.0 | 2375 | 0.3500 | 0.8574 |
0.4273 | 14.0 | 2558 | 0.3326 | 0.8624 |
0.4247 | 15.0 | 2741 | 0.3224 | 0.8684 |
0.4063 | 16.0 | 2924 | 0.3096 | 0.8707 |
0.367 | 17.0 | 3106 | 0.2713 | 0.8945 |
0.3605 | 18.0 | 3289 | 0.3160 | 0.8755 |
0.3475 | 19.0 | 3472 | 0.2559 | 0.8995 |
0.3262 | 20.0 | 3655 | 0.2437 | 0.9030 |
0.3218 | 21.0 | 3837 | 0.2343 | 0.9090 |
0.3125 | 22.0 | 4020 | 0.2267 | 0.9113 |
0.336 | 23.0 | 4203 | 0.2170 | 0.9138 |
0.2813 | 24.0 | 4386 | 0.2062 | 0.9199 |
0.2802 | 25.0 | 4568 | 0.1956 | 0.9196 |
0.2996 | 26.0 | 4751 | 0.1923 | 0.9244 |
0.2699 | 27.0 | 4934 | 0.1934 | 0.9273 |
0.2642 | 28.0 | 5117 | 0.1973 | 0.9242 |
0.2491 | 29.0 | 5299 | 0.1686 | 0.9394 |
0.2611 | 30.0 | 5482 | 0.1793 | 0.9326 |
0.2383 | 31.0 | 5665 | 0.1744 | 0.9332 |
0.2338 | 32.0 | 5848 | 0.1537 | 0.9448 |
0.2225 | 33.0 | 6030 | 0.1569 | 0.9405 |
0.2383 | 34.0 | 6213 | 0.1422 | 0.9480 |
0.2253 | 35.0 | 6396 | 0.1413 | 0.9455 |
0.2257 | 36.0 | 6579 | 0.1535 | 0.9442 |
0.2308 | 37.0 | 6761 | 0.1655 | 0.9423 |
0.2241 | 38.0 | 6944 | 0.1272 | 0.9530 |
0.2253 | 39.0 | 7127 | 0.1464 | 0.9440 |
0.1996 | 40.0 | 7310 | 0.1332 | 0.9527 |
0.225 | 41.0 | 7492 | 0.1311 | 0.9530 |
0.1918 | 42.0 | 7675 | 0.1546 | 0.9459 |
0.1937 | 43.0 | 7858 | 0.1388 | 0.9515 |
0.2043 | 44.0 | 8041 | 0.1185 | 0.9596 |
0.1802 | 45.0 | 8223 | 0.1195 | 0.9557 |
0.1821 | 46.0 | 8406 | 0.1152 | 0.9604 |
0.1712 | 47.0 | 8589 | 0.1273 | 0.9575 |
0.1865 | 48.0 | 8772 | 0.1209 | 0.9565 |
0.1706 | 49.0 | 8954 | 0.1057 | 0.9611 |
0.1817 | 50.0 | 9137 | 0.1114 | 0.9602 |
0.1753 | 51.0 | 9320 | 0.1114 | 0.9621 |
0.1826 | 52.0 | 9503 | 0.1055 | 0.9634 |
0.178 | 53.0 | 9685 | 0.1069 | 0.9644 |
0.1522 | 54.0 | 9868 | 0.1036 | 0.9625 |
0.171 | 55.0 | 10051 | 0.1068 | 0.9619 |
0.1656 | 56.0 | 10234 | 0.0925 | 0.9644 |
0.163 | 57.0 | 10416 | 0.0939 | 0.9677 |
0.1631 | 58.0 | 10599 | 0.1130 | 0.9592 |
0.169 | 59.0 | 10782 | 0.0907 | 0.9671 |
0.1491 | 60.0 | 10965 | 0.1055 | 0.9632 |
0.1572 | 61.0 | 11147 | 0.0940 | 0.9638 |
0.1617 | 62.0 | 11330 | 0.1008 | 0.9636 |
0.1584 | 63.0 | 11513 | 0.0989 | 0.9673 |
0.1597 | 64.0 | 11696 | 0.1026 | 0.9648 |
0.1466 | 65.0 | 11878 | 0.1008 | 0.9665 |
0.1468 | 66.0 | 12061 | 0.0947 | 0.9644 |
0.1562 | 67.0 | 12244 | 0.0864 | 0.9707 |
0.1589 | 68.0 | 12427 | 0.0980 | 0.9656 |
0.1505 | 69.0 | 12609 | 0.0908 | 0.9681 |
0.1497 | 70.0 | 12792 | 0.0879 | 0.9690 |
0.1362 | 71.0 | 12975 | 0.0864 | 0.9700 |
0.1418 | 72.0 | 13158 | 0.0949 | 0.9684 |
0.1345 | 73.0 | 13340 | 0.0994 | 0.9681 |
0.1333 | 74.0 | 13523 | 0.0859 | 0.9700 |
0.1414 | 75.0 | 13706 | 0.0912 | 0.9692 |
0.137 | 76.0 | 13889 | 0.0863 | 0.9719 |
0.1326 | 77.0 | 14071 | 0.0811 | 0.9707 |
0.1429 | 78.0 | 14254 | 0.0875 | 0.9690 |
0.1363 | 79.0 | 14437 | 0.0909 | 0.9690 |
0.1344 | 80.0 | 14620 | 0.0913 | 0.9692 |
0.1221 | 81.0 | 14802 | 0.0908 | 0.9706 |
0.1192 | 82.0 | 14985 | 0.0835 | 0.9715 |
0.1252 | 83.0 | 15168 | 0.0865 | 0.9711 |
0.1404 | 84.0 | 15351 | 0.0922 | 0.9700 |
0.124 | 85.0 | 15533 | 0.0845 | 0.9700 |
0.1278 | 86.0 | 15716 | 0.0859 | 0.9721 |
0.1271 | 87.0 | 15899 | 0.0835 | 0.9725 |
0.1254 | 88.0 | 16082 | 0.0843 | 0.9721 |
0.1363 | 89.0 | 16264 | 0.0852 | 0.9707 |
0.1144 | 90.0 | 16447 | 0.0846 | 0.9729 |
0.1217 | 91.0 | 16630 | 0.0822 | 0.9729 |
0.1185 | 92.0 | 16813 | 0.0818 | 0.9731 |
0.1095 | 93.0 | 16995 | 0.0825 | 0.9725 |
0.1181 | 94.0 | 17178 | 0.0811 | 0.9729 |
0.1191 | 95.0 | 17361 | 0.0839 | 0.9736 |
0.1107 | 96.0 | 17544 | 0.0825 | 0.9729 |
0.1093 | 97.0 | 17726 | 0.0825 | 0.9734 |
0.1187 | 98.0 | 17909 | 0.0811 | 0.9731 |
0.1302 | 99.0 | 18092 | 0.0823 | 0.9727 |
0.1146 | 99.59 | 18200 | 0.0817 | 0.9731 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.1.2+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.