Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit AutoTrain.
Usage
!pip install -U "huggingface_hub[cli]"
!huggingface-cli login --token "************" --add-to-git-credential
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_path = "Ebrahimaabdelghfar/Ubuntu_assistant_Gemma2B"
torch.backends.cuda.enable_mem_efficient_sdp(False)
torch.backends.cuda.enable_flash_sdp(False)
tokenizer = AutoTokenizer.from_pretrained(model_path,max_new_tokens=1000000)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "what sudo do?"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'),max_length=1023,max_new_tokens=100)
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
print(response)
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.