File size: 3,364 Bytes
8a04648
 
 
 
 
 
 
 
ee075cc
 
 
8a04648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3630875
ee075cc
 
 
8a04648
 
 
 
ee075cc
8a04648
3630875
 
 
 
 
 
 
 
 
 
 
8a04648
 
 
ee075cc
 
 
8a04648
 
 
ee075cc
8a04648
 
 
ee075cc
8a04648
eebe441
 
 
 
8a04648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee075cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: vit-base-patch16-224-in21k-Landscape_Recognition
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8686666666666667
language:
- en
pipeline_tag: image-classification
---

# vit-base-patch16-224-in21k-Landscape_Recognition

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k).
It achieves the following results on the evaluation set:
- Loss: 0.4648
- Accuracy: 0.8687
- Weighted f1: 0.8694
- Micro f1: 0.8687
- Macro f1: 0.8694
- Weighted recall: 0.8687
- Micro recall: 0.8687
- Macro recall: 0.8687
- Weighted precision: 0.8714
- Micro precision: 0.8687
- Macro precision: 0.8714

## Model description

This is a multiclass image classification model of different types of landscaping.

For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Landscape%20Recognition/Landscape_Recognition_ViT.ipynb

## Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

## Training and evaluation data

Dataset Source: https://www.kaggle.com/datasets/utkarshsaxenadn/landscape-recognition-image-dataset-12k-images

_Sample Images From Dataset:_

![Sample Images](https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/raw/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Landscape%20Recognition/Images/Sample%20Images.png)

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
| 0.2866        | 1.0   | 625  | 0.4308          | 0.8487   | 0.8538      | 0.8487   | 0.8538   | 0.8487          | 0.8487       | 0.8487       | 0.8700             | 0.8487          | 0.8700          |
| 0.1522        | 2.0   | 1250 | 0.4648          | 0.8687   | 0.8694      | 0.8687   | 0.8694   | 0.8687          | 0.8687       | 0.8687       | 0.8714             | 0.8687          | 0.8714          |
| 0.0609        | 3.0   | 1875 | 0.5122          | 0.866    | 0.8678      | 0.866    | 0.8678   | 0.866           | 0.866        | 0.866        | 0.8710             | 0.866           | 0.8710          |


### Framework versions

- Transformers 4.27.4
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.13.3