This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2756
  • Wer: 0.2279

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-sl-a1 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs

  1. To evaluate on speech-recognition-community-v2/dev_data

python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-sl-a1 --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 10 --stride_length_s 1

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.3881 6.1 500 2.9710 1.0
2.6401 12.2 1000 1.7677 0.9734
1.5152 18.29 1500 0.5564 0.6011
1.2191 24.39 2000 0.4319 0.4390
1.0237 30.49 2500 0.3141 0.3175
0.8892 36.59 3000 0.2748 0.2689
0.8296 42.68 3500 0.2680 0.2534
0.7602 48.78 4000 0.2820 0.2506
0.7186 54.88 4500 0.2672 0.2398
0.6887 60.98 5000 0.2729 0.2402
0.6507 67.07 5500 0.2767 0.2361
0.6226 73.17 6000 0.2817 0.2332
0.6024 79.27 6500 0.2679 0.2279
0.5787 85.37 7000 0.2837 0.2316
0.5744 91.46 7500 0.2838 0.2284
0.5556 97.56 8000 0.2763 0.2281

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train DrishtiSharma/wav2vec2-xls-r-sl-a1

Evaluation results