Uploaded model

  • Developed by: Dragneel
  • License: apache-2.0
  • Finetuned from model : unsloth/Phi-3-mini-4k-instruct-bnb-4bit

Use The Model

from transformers import AutoTokenizer, AutoModelForCausalLM

Load the tokenizer and model

tokenizer = AutoTokenizer.from_pretrained("Dragneel/Phi-3-mini-Nepali-Text-Summarization-f16")

model = AutoModelForCausalLM.from_pretrained("Dragneel/Phi-3-mini-Nepali-Text-Summarization-f16")

Example input text

input_text = "Summarize Nepali Text in Nepali: काठमाडौंको बहिराव बसपार्कमा एक भयानक दुर्घटना घटेको थियो। रातको समय थियो र भारी बर्फ जम्मा भएको थियो।"

Tokenize the input text

input_ids = tokenizer.encode(input_text, return_tensors='pt')

Generate text with adjusted parameters

outputs = model.generate(input_ids, max_new_tokens=50)

Decode the generated tokens

generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)

print(generated_text)

Downloads last month
36
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Dragneel/Phi-3-mini-Nepali-Text-Summarization-f16

Finetuned
(589)
this model

Dataset used to train Dragneel/Phi-3-mini-Nepali-Text-Summarization-f16