Visualize in Weights & Biases

PairRM-V2-phi3-3-mini-unified-feedback

This model is a fine-tuned version of microsoft/Phi-3-mini-128k-instruct on the all dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2755

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.3099 0.3245 500 0.3066
0.3073 0.6490 1000 0.2901
0.263 0.9736 1500 0.2846
0.2822 1.2981 2000 0.2831
0.2693 1.6226 2500 0.2787
0.2741 1.9471 3000 0.2778
0.2869 2.2716 3500 0.2762
0.2339 2.5961 4000 0.2756
0.2879 2.9207 4500 0.2755

Framework versions

  • PEFT 0.11.1
  • Transformers 4.43.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
7
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for DongfuJiang/PairRM-V2-phi-3-4k-mini-all

Adapter
(155)
this model