File size: 5,287 Bytes
9530d8e 3c5a32a 9530d8e 3c5a32a 9530d8e 3c5a32a 9530d8e 3c5a32a 9530d8e 3c5a32a 9530d8e 3c5a32a 9530d8e 3c5a32a 9530d8e 3c5a32a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- generated_from_trainer
- not-for-all-audiences
model-index:
- name: pippa-lora
results: []
datasets:
- PygmalionAI/PIPPA
---
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# mistral-v0.1-7b-pippa-metharme-lora
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the PIPPA dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3494
## Model description
8-bit lora trained on the [PygmalionAI/PIPPA](https://huggingface.co/datasets/PygmalionAI/PIPPA) dataset using axolotl.
## Intended uses & limitations
PIPPA consists of just a little more than 1 million lines of dialogue spread out over 26,000 conversations between users of the popular chatbot website "Character.AI" and its large language model, obtained through a large community effort taking place over the course of several months. Tallying shows that over 1,000 unique personas simulating both real and fictional characters are represented within the dataset, allowing PIPPA and LLMs fine-tuned on it to adapt to many different roleplay domains.
⚠️ CAUTION: PIPPA contains conversations, themes and scenarios which can be considered "not safe for work" (NSFW) and/or heavily disturbing in nature. Models trained purely with PIPPA may have the tendency to generate X-rated output. You have been warned.
## Training and evaluation data
[PygmalionAI/PIPPA](https://huggingface.co/datasets/PygmalionAI/PIPPA)
```
@misc{gosling2023pippa,
title={PIPPA: A Partially Synthetic Conversational Dataset},
author={Tear Gosling and Alpin Dale and Yinhe Zheng},
year={2023},
eprint={2308.05884},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7313 | 0.05 | 100 | 1.7044 |
| 1.68 | 0.11 | 200 | 1.6176 |
| 1.5642 | 0.16 | 300 | 1.5538 |
| 1.6617 | 0.22 | 400 | 1.4986 |
| 1.4733 | 0.27 | 500 | 1.4723 |
| 1.4916 | 0.33 | 600 | 1.4427 |
| 1.5036 | 0.38 | 700 | 1.4271 |
| 1.2385 | 0.44 | 800 | 1.4109 |
| 1.4094 | 0.49 | 900 | 1.3968 |
| 1.4042 | 0.55 | 1000 | 1.3848 |
| 1.3946 | 0.6 | 1100 | 1.3771 |
| 1.2523 | 0.66 | 1200 | 1.3692 |
| 1.2932 | 0.71 | 1300 | 1.3648 |
| 1.346 | 0.77 | 1400 | 1.3609 |
| 1.1163 | 0.82 | 1500 | 1.3565 |
| 1.4656 | 0.88 | 1600 | 1.3495 |
| 1.2698 | 0.93 | 1700 | 1.3484 |
| 1.2019 | 0.99 | 1800 | 1.3454 |
| 1.3685 | 1.04 | 1900 | 1.3477 |
| 1.2248 | 1.1 | 2000 | 1.3488 |
| 1.2162 | 1.15 | 2100 | 1.3479 |
| 1.0443 | 1.21 | 2200 | 1.3491 |
| 1.2445 | 1.26 | 2300 | 1.3460 |
| 1.3229 | 1.32 | 2400 | 1.3476 |
| 1.3464 | 1.37 | 2500 | 1.3439 |
| 1.2651 | 1.43 | 2600 | 1.3439 |
| 1.516 | 1.48 | 2700 | 1.3424 |
| 1.4323 | 1.54 | 2800 | 1.3413 |
| 1.08 | 1.59 | 2900 | 1.3436 |
| 1.289 | 1.64 | 3000 | 1.3379 |
| 1.1221 | 1.7 | 3100 | 1.3384 |
| 1.1895 | 1.75 | 3200 | 1.3376 |
| 1.3138 | 1.81 | 3300 | 1.3358 |
| 1.3907 | 1.86 | 3400 | 1.3343 |
| 1.4544 | 1.92 | 3500 | 1.3351 |
| 1.25 | 1.97 | 3600 | 1.3334 |
| 1.2682 | 2.03 | 3700 | 1.3452 |
| 1.3107 | 2.08 | 3800 | 1.3471 |
| 1.2096 | 2.14 | 3900 | 1.3496 |
| 1.4503 | 2.19 | 4000 | 1.3503 |
| 1.142 | 2.25 | 4100 | 1.3485 |
| 0.8439 | 2.3 | 4200 | 1.3490 |
| 1.2749 | 2.36 | 4300 | 1.3508 |
| 0.9578 | 2.41 | 4400 | 1.3502 |
| 1.2203 | 2.47 | 4500 | 1.3496 |
| 0.9451 | 2.52 | 4600 | 1.3498 |
| 0.9602 | 2.58 | 4700 | 1.3491 |
| 0.9501 | 2.63 | 4800 | 1.3491 |
| 1.2062 | 2.69 | 4900 | 1.3496 |
| 1.1728 | 2.74 | 5000 | 1.3491 |
| 1.2506 | 2.8 | 5100 | 1.3494 |
| 1.4052 | 2.85 | 5200 | 1.3494 |
| 1.2012 | 2.91 | 5300 | 1.3494 |
| 1.3141 | 2.96 | 5400 | 1.3494 |
### Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0 |