Edit model card

DijiHaxMasterFramework Dreamscape.Beam Integration: A Pseudocode Perspective

The DijiHaxMasterFramework, a master-level AI system, aims to harness the power of quantum computing simulations and adaptive AI learning to process and understand multimodal data from diverse sources. This futuristic framework envisions an AI capable of integrating textual, visual, and sensory inputs for comprehensive environmental understanding while employing quantum computational power for data transformation and processing at unprecedented speeds and efficiencies. Here, we will focus on the integration of the Dreamscape.Beam technology, which enables advanced cognitive simulations and neural network enhancements within the framework.

import torch

from torch import nn

from transformers import T5ForConditionalGeneration, T5Tokenizer

from dreamscape_beam import DreamscapeBeam

class QuantumComputationalUnit(nn.Module):


    This module represents a leap in computational power, simulating quantum computing principles

    within a deep learning framework to process and transform data at unprecedented speeds and efficiency.


    def __init__(self, input_dim):

        super(QuantumComputationalUnit, self).__init__()

        self.complex_transform = nn.Sequential(\

            nn.Linear(input_dim, 2*input_dim), nn.GELU(), nn.Linear(2*input_dim, input_dim), nn.Sigmoid())


    def forward(self, x):

        return self.complex_transform(x)

class MultiModalDataIntegrator(nn.Module):


    Integrates various types of data inputs, including textual, visual, and sensory data,

    providing a comprehensive understanding of complex environments.


    def __init__(self):

        super(MultiModalDataIntegrator, self).__init__()

        self.text_processor = T5ForConditionalGeneration.from_pretrained('t5-large')

        self.text_tokenizer = T5Tokenizer.from_pretrained('t5-large')

        # Simulations for visual and sensory data processing could be added here

    def process_text(self, text):

        text_encoded = self.text_tokenizer(text, return_tensors='pt').input_ids

        text_output = self.text_processor(**text_encoded)

        return text_output.logits.mean(dim=1)

class GlobalCommunicationNetwork(nn.Module):


    Facilitates instant, secure communication across the framework, enabling real-time data sharing,

    learning, and decision-making on a global scale.


    def __init__(self, communication_dim):

        super(GlobalCommunicationNetwork, self).__init__()

        self.global_communicator = nn.Linear(communication_dim, communication_dim)


    def forward(self, data):

        return torch.relu(self.global_communicator(data))

class DreamscapeBeamEnhancer(nn.Module):


    Enhances neural networks using the Dreamscape.Beam technology for advanced cognitive simulations.


    def __init__(self):

        super(DreamscapeBeamEnhancer, self).__init__()

        self.dreamscape_beam = DreamscapeBeam()


    def forward(self, x):

        x = self.dreamscape_beam.process(x)

        return x

class DijiHaxMasterFramework(nn.Module):

    def __init__(self):

        super(DijiHaxMasterFramework, self).__init__()

        self.quantum_unit = QuantumComputationalUnit(512)  # Assuming an embedding size of 512

        self.data_integrator = MultiModalDataIntegrator()

        self.global_network = GlobalCommunicationNetwork(512)

        self.dreamscape_enhancer = DreamscapeBeamEnhancer()


    def forward(self, text_input):

        # Process text through the multi-modal data integrator

        integrated_data = self.data_integrator.process_text(text_input)


        # Enhance data processing with quantum computational power

        quantum_enhanced_data = self.quantum_unit(integrated_data.float())


        # Apply Dreamscape.Beam enhancements to the data

        dreamscape_enhanced_data = self.dreamscape_enhancer(quantum_enhanced_data)


        # Leverage global communication network for distributed learning and decision making

        global_output = self.global_network(dreamscape_enhanced_data)


        return global_output

def showcase_master_framework():

    master_framework = DijiHaxMasterFramework()

    input_text = "Exploring the fusion of quantum computing and artificial intelligence with Dreamscape.Beam enhancements."

    output = master_framework(input_text)

    print(f"DijiHax Master Framework Output with Dreamscape.Beam: {output}")

if __name__ == "__main__":


In this pseudocode, we introduce the DreamscapeBeamEnhancer module, which utilizes the Dreamscape.Beam technology for advanced cognitive simulations and neural network enhancements within the DijiHaxMasterFramework. This module is integrated into the framework, ensuring that the data processed by the QuantumComputationalUnit is further enhanced by the Dreamscape.Beam technology before being passed to the GlobalCommunicationNetwork for distributed learning and decision-making on a global scale.

The showcase_master_framework function demonstrates the capabilities of the enhanced framework by processing an input text that highlights the fusion of quantum computing, artificial intelligence, and Dreamscape.Beam enhancements. The output generated by the framework showcases the potential of this integrated system to understand, learn, and operate across diverse domains and scales, pushing the boundaries of AI research and development. By incorporating cutting-edge technologies like quantum computing simulations, adaptive AI learning, and advanced cognitive simulations, the DijiHaxMasterFramework with Dreamscape.Beam integration represents a bold leap forward in AI research and development, aiming to significantly advance human knowledge, improve global connectivity, and address the world's most pressing challenges with unprecedented efficiency and intelligence.inference: false license: apache-2.0 datasets:

  • HuggingFaceTB/cosmopedia
  • microsoft/orca-math-word-problems-200k
  • fka/awesome-chatgpt-prompts
  • CausalLM/Refined-Anime-Text
  • storytracer/US-PD-Books
  • bigcode/the-stack-v2
  • argilla/OpenHermesPreferences
  • Cohere/wikipedia-2023-11-embed-multilingual-v3
  • Cohere/wikipedia-2023-11-embed-multilingual-v3-int8-binary
  • HuggingFaceTB/cosmopedia-meta
  • HuggingFaceTB/cosmopedia-20k
  • HuggingFaceTB/cosmopedia-100k
  • 5CD-AI/Vietnamese-microsoft-orca-math-word-problems-200k-gg-translated
  • bigcode/the-stack-v2-train-smol-ids
  • bigcode/the-stack-v2-train-full-ids
  • bigcode/the-stack-v2-dedup
  • Dijitaal/DijiHax
  • open-llm-leaderboard/details_pharaouk__fusedyi
  • open-llm-leaderboard/details_stanford-oval__Llama-2-7b-WikiChat-fused
  • m-a-p/Code-Feedback
  • databricks/databricks-dolly-15k
  • open-llm-leaderboard/details_synapsoft__Llama-2-7b-chat-hf-flan2022-1.2M
  • open-llm-leaderboard/details_synapsoft__Llama-2-7b-hf-flan2022-1.2M language:
  • en metrics:
  • accuracy
  • bertscore
  • code_eval
  • chrf
  • character
  • cer
  • brier_score
  • bleurt tags:
  • chemistry
  • biology
  • legal
  • art
  • climate
  • not-for-all-audiences
  • text-generation-inference
  • merge
  • moe
  • finance
  • music
  • code
  • medical
Downloads last month
Unable to determine this model's library. Check the docs .

Datasets used to train Dijitaal/DijiHax