File size: 5,964 Bytes
69da708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import re
import torch
from string import printable, punctuation
from tqdm import tqdm
import warnings


class Normalizer:
    def __init__(self,
                 device='cpu',
                 jit_model='jit_s2s.pt'):
        super(Normalizer, self).__init__()

        self.device = torch.device(device)

        self.init_vocabs()

        self.model = torch.jit.load(jit_model, map_location=device)
        self.model.eval()
        self.max_len = 150

    def init_vocabs(self):
        # Initializes source and target vocabularies

        # vocabs
        rus_letters = 'абвгдеёжзийклмнопрстуфхцчшщъыьэюяАБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ'
        spec_symbols = '¼³№¾⅞½⅔⅓⅛⅜²'
        # numbers + eng + punctuation + space + rus
        self.src_vocab = {token: i + 5 for i, token in enumerate(printable[:-5] + rus_letters + '«»—' + spec_symbols)}
        # punctuation + space + rus
        self.tgt_vocab = {token: i + 5 for i, token in enumerate(punctuation + rus_letters + ' ' + '«»—')}

        unk = '#UNK#'
        pad = '#PAD#'
        sos = '#SOS#'
        eos = '#EOS#'
        tfo = '#TFO#'
        for i, token in enumerate([unk, pad, sos, eos, tfo]):
            self.src_vocab[token] = i
            self.tgt_vocab[token] = i

        for i, token_name in enumerate(['unk', 'pad', 'sos', 'eos', 'tfo']):
            setattr(self, '{}_index'.format(token_name), i)

        inv_src_vocab = {v: k for k, v in self.src_vocab.items()}
        self.src2tgt = {src_i: self.tgt_vocab.get(src_symb, -1) for src_i, src_symb in inv_src_vocab.items()}

    def keep_unknown(self, string):
        reg = re.compile(r'[^{}]+'.format(''.join(self.src_vocab.keys())))
        unk_list = re.findall(reg, string)

        unk_ids = [range(m.start() + 1, m.end()) for m in re.finditer(reg, string) if m.end() - m.start() > 1]
        flat_unk_ids = [i for sublist in unk_ids for i in sublist]

        upd_string = ''.join([s for i, s in enumerate(string) if i not in flat_unk_ids])
        return upd_string, unk_list

    def _norm_string(self, string):
        # Normalizes chunk

        if len(string) == 0:
            return string
        string, unk_list = self.keep_unknown(string)

        token_src_list = [self.src_vocab.get(s, self.unk_index) for s in list(string)]
        src = token_src_list + [self.eos_index] + [self.pad_index]

        src2tgt = [self.src2tgt[s] for s in src]
        src2tgt = torch.LongTensor(src2tgt).to(self.device)

        src = torch.LongTensor(src).unsqueeze(0).to(self.device)
        with torch.no_grad():
            out = self.model(src, src2tgt)
        pred_words = self.decode_words(out, unk_list)
        if len(pred_words) > 199:
            warnings.warn("Sentence {} is too long".format(string), Warning)
        return pred_words

    def norm_text(self, text):
        # Normalizes text

        # Splits sentences to small chunks with weighted length <= max_len:
        # * weighted length - estimated length of normalized sentence
        #
        # 1. Full text is splitted by "ending" symbols (\n\t?!.) to sentences;
        # 2. Long sentences additionally splitted to chunks: by spaces or just dividing too long words

        splitters = '\n\t?!'
        parts = [p for p in re.split(r'({})'.format('|\\'.join(splitters)), text) if p != '']
        norm_parts = []
        for part in tqdm(parts):
            if part in splitters:
                norm_parts.append(part)
            else:
                weighted_string = [7 if symb.isdigit() else 1 for symb in part]
                if sum(weighted_string) <= self.max_len:
                    norm_parts.append(self._norm_string(part))
                else:
                    spaces = [m.start() for m in re.finditer(' ', part)]
                    start_point = 0
                    end_point = 0
                    curr_point = 0

                    while start_point < len(part):
                        if curr_point in spaces:
                            if sum(weighted_string[start_point:curr_point]) < self.max_len:
                                end_point = curr_point + 1
                            else:
                                norm_parts.append(self._norm_string(part[start_point:end_point]))
                                start_point = end_point

                        elif sum(weighted_string[end_point:curr_point]) >= self.max_len:
                            if end_point > start_point:
                                norm_parts.append(self._norm_string(part[start_point:end_point]))
                                start_point = end_point
                            end_point = curr_point - 1
                            norm_parts.append(self._norm_string(part[start_point:end_point]))
                            start_point = end_point
                        elif curr_point == len(part):
                            norm_parts.append(self._norm_string(part[start_point:]))
                            start_point = len(part)

                        curr_point += 1
        return ''.join(norm_parts)

    def decode_words(self, pred, unk_list=None):
        if unk_list is None:
            unk_list = []
        pred = pred.cpu().numpy()
        pred_words = "".join(self.lookup_words(x=pred,
                                               vocab={i: w for w, i in self.tgt_vocab.items()},
                                               unk_list=unk_list))
        return pred_words

    def lookup_words(self, x, vocab, unk_list=None):
        if unk_list is None:
            unk_list = []
        result = []
        for i in x:
            if i == self.unk_index:
                if len(unk_list) > 0:
                    result.append(unk_list.pop(0))
                else:
                    continue
            else:
                result.append(vocab[i])
        return [str(t) for t in result]