Update handler.py
#1
by
philschmid
HF staff
- opened
- handler.py +2 -2
handler.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import torch
|
2 |
from typing import Dict, List, Any
|
3 |
# from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
-
from transformers import AutoTokenizer,
|
5 |
|
6 |
# check for GPU
|
7 |
device = 0 if torch.cuda.is_available() else -1
|
@@ -13,7 +13,7 @@ class EndpointHandler:
|
|
13 |
tokenizer = AutoTokenizer.from_pretrained(path)
|
14 |
# model = AutoModel.from_pretrained(path, low_cpu_mem_usage=True)
|
15 |
# model = AutoModelForCausalLM.from_pretrained(path, low_cpu_mem_usage=True)
|
16 |
-
model =
|
17 |
# create inference pipeline
|
18 |
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device)
|
19 |
|
|
|
1 |
import torch
|
2 |
from typing import Dict, List, Any
|
3 |
# from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
5 |
|
6 |
# check for GPU
|
7 |
device = 0 if torch.cuda.is_available() else -1
|
|
|
13 |
tokenizer = AutoTokenizer.from_pretrained(path)
|
14 |
# model = AutoModel.from_pretrained(path, low_cpu_mem_usage=True)
|
15 |
# model = AutoModelForCausalLM.from_pretrained(path, low_cpu_mem_usage=True)
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(path, low_cpu_mem_usage=True)
|
17 |
# create inference pipeline
|
18 |
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device)
|
19 |
|