File size: 2,305 Bytes
1c256f5 21dfbb4 2639b66 4147583 21dfbb4 2639b66 c42fa54 2b1286c c42fa54 4147583 1c256f5 2639b66 1c256f5 6bacea7 1c256f5 50a2529 1c256f5 50a2529 1c256f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: mit
datasets:
- codeparrot/codeparrot-clean
tags:
- text-generation
- code-generation
- gpt2-large
widget:
- text: >-
def add(a,b):
example_title: Example 1
- text: >-
def get_file_size(filename):
"""
Return the size of a file.
"""
example_title: Example 2
inference:
parameters:
max_new_tokens: 10
num_return_sequences: 1
do_sample: false
---
# Code Generation using GPT2-Large
This is a GPT2-large model that's further fine-tuned on the Codeparrot clean dataset with a custom metric focused on code generation. <br>
I've further trained the tokenizer initialized from the GPT2-large on the same dataset to better align the tokenization for generating code.
## Model description
This Model has the same architecture and Parameters as the GPT2-large model. Please refer to this [link](https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf) to know more about the model details.
## Intended Use & Limitations
This model is intended to generate code for the required function based on a small description of the output required.<br>
**Note:** The model is primarily trained with an objective of code generation.
## Usage
You can use this model directly to get the summaries:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load Code Generator LLM and tokenizer from checkpoint
tokenizer = AutoTokenizer.from_pretrained("DeathReaper0965/gpt2_large_code_generator")
model = AutoModelForCausalLM.from_pretrained("DeathReaper0965/gpt2_large_code_generator")
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
inputs = tokenizer("def hello_world():", return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
outputs = model.generate(**inputs,
max_new_tokens= 30,
num_return_sequences= 1)
print(tokenizer.batch_decode(outputs)[0])
###########OUTPUT###########
def hello_world():
return "Hello World!"
@app.route("/hello_world")
def hello_world():
return "Hello World!"
```
> Designed and Developed with <span style="color: #e25555;">♥</span> by [Praneet](https://deathreaper0965.github.io/) | [LinkedIn](http://linkedin.com/in/deathreaper0965) | [GitHub](https://github.com/DeathReaper0965/) |